Abstract

We report on a novel means which lifts the restriction of the limited optical bandwidth of photonic bandgap hollow-core photonic crystal fiber on generating high order stimulated Raman scattering in gaseous media. This is based on H2-filled tapered HC-PCF in which the taper slope is matched with the effective length of Raman process. Raman orders outside the input-bandwidth of the HC-PCF are observed with more than 80% quantum-conversion using a compact, low-power 1064 nm microchip laser. The technique opens prospects for efficient sources in spectral regions that are poorly covered by currently existing lasers such as mid-IR.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [CrossRef] [PubMed]
  2. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903–143904 (2007).
    [CrossRef] [PubMed]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  4. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
    [CrossRef] [PubMed]
  5. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
    [CrossRef]
  6. P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33(15), 1690–1692 (2008).
    [CrossRef] [PubMed]
  7. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
    [CrossRef]
  8. J. Shephard, W. Macpherson, R. Maier, J. Jones, D. Hand, M. Mohebbi, A. George, P. Roberts, and J. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13(18), 7139–7144 (2005).
    [CrossRef] [PubMed]
  9. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express 17(26), 23468–23473 (2009).
    [CrossRef]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  11. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
    [CrossRef]
  12. F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007).
    [CrossRef] [PubMed]
  13. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  14. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  15. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [CrossRef] [PubMed]
  16. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
    [CrossRef] [PubMed]
  17. Y. Y. Wang, P. S. Light, and F. Benabid, “Core-surround Shaping of Hollow-Core Photonic Crystal Fiber via HF Etching,” Photon. Technol. Lett. 20(12), 1018–1020 (2008).
    [CrossRef]
  18. G. C. Fralick and R. T. Deck, “Reassessment of the theory of stimulated Raman scattering,” Phys. Rev. B 32(10), 6207–6213 (1985).
    [CrossRef]
  19. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in Microstructured Optical Fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
    [CrossRef]

2009 (1)

2008 (3)

2007 (2)

F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903–143904 (2007).
[CrossRef] [PubMed]

2006 (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in Microstructured Optical Fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

2005 (3)

2004 (2)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
[CrossRef] [PubMed]

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

2002 (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[CrossRef]

1996 (1)

1995 (1)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

1985 (1)

G. C. Fralick and R. T. Deck, “Reassessment of the theory of stimulated Raman scattering,” Phys. Rev. B 32(10), 6207–6213 (1985).
[CrossRef]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Atkin, D. M.

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[CrossRef]

Benabid, F.

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

Y. Y. Wang, P. S. Light, and F. Benabid, “Core-surround Shaping of Hollow-Core Photonic Crystal Fiber via HF Etching,” Photon. Technol. Lett. 20(12), 1018–1020 (2008).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903–143904 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Bouwmans, G.

G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Cook, K.

Couny, F.

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903–143904 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Deck, R. T.

G. C. Fralick and R. T. Deck, “Reassessment of the theory of stimulated Raman scattering,” Phys. Rev. B 32(10), 6207–6213 (1985).
[CrossRef]

Ebendorff-Heidepriem, H.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in Microstructured Optical Fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

Farr, L.

Fink, Y.

Fralick, G. C.

G. C. Fralick and R. T. Deck, “Reassessment of the theory of stimulated Raman scattering,” Phys. Rev. B 32(10), 6207–6213 (1985).
[CrossRef]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

George, A.

George, A. K.

Gérôme, F.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

Hand, D.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

Humbert, G.

Jakobsen, C.

Jones, J.

Knight, J.

Knight, J. C.

F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Kosterev, A. A.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

Light, P. S.

Y. Y. Wang, P. S. Light, and F. Benabid, “Core-surround Shaping of Hollow-Core Photonic Crystal Fiber via HF Etching,” Photon. Technol. Lett. 20(12), 1018–1020 (2008).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903–143904 (2007).
[CrossRef] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

Lyngsø, J. K.

Macpherson, W.

Maier, R.

Mangan, B.

Mangan, B. J.

Mason, M. W.

Mohebbi, M.

Monro, T. M.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in Microstructured Optical Fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Rakich, P. T.

Roberts, P.

Roberts, P. J.

Russell, P.

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[CrossRef]

Sabert, H.

Shephard, J.

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[CrossRef]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Soljacic, M.

St J Russell, P.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

Tittel, F. K.

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[CrossRef]

Tomlinson, A.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, Y. Y.

Y. Y. Wang, P. S. Light, and F. Benabid, “Core-surround Shaping of Hollow-Core Photonic Crystal Fiber via HF Etching,” Photon. Technol. Lett. 20(12), 1018–1020 (2008).
[CrossRef]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Williams, D.

Williams, D. P.

IEEE J. Quantum Electron. (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002).
[CrossRef]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in Microstructured Optical Fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006).
[CrossRef]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[CrossRef]

IEE Proc. J Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991).
[CrossRef]

Nature (2)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Photon. Technol. Lett. (1)

Y. Y. Wang, P. S. Light, and F. Benabid, “Core-surround Shaping of Hollow-Core Photonic Crystal Fiber via HF Etching,” Photon. Technol. Lett. 20(12), 1018–1020 (2008).
[CrossRef]

Phys. Rev. B (1)

G. C. Fralick and R. T. Deck, “Reassessment of the theory of stimulated Raman scattering,” Phys. Rev. B 32(10), 6207–6213 (1985).
[CrossRef]

Phys. Rev. Lett. (2)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903–143904 (2007).
[CrossRef] [PubMed]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Tapered PBG HC-PCF based Raman converter: A) Schematic impression of the matched cascade of Raman Stokes down-conversion and HC-PCF PBG red-shift. The transmission window is red-shifted along the tapered HC-PCF at a rate that matches the rate of the Raman conversion to higher order Stokes. B) Schematic of the experimental set-up. A microchip laser emitting at 1064 nm is coupled to a tapered HC-PCF filled with H2. The transmission window of the taper is centered around 1064 nm at the input end, and around 1500 nm at the output end. The taper is either spliced at both ends or at the input end with the second end is attached to gas chamber for pressure optimization or for imaging the intensity profile of the output spectral components. λ/2 and λ/4 stand for half-wave plate and quarter-wave plate respectively; PBS: polarizing beam-splitter; MO: microscope objective; IF: interference filter. OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

Physical and optical properties of a tapered HC-PCF. (A) and (B) Scanning electronic micrograph (SEM) of a tapered HC-PCF at the input section (1064 nm end) and the output section (1550 nm end) respectively. (C): Measured fibre core-diameter and cladding pitch o a tapered HC-PCF at different length sections. (D) Central band gap wavelength (black) at the position of the taper and 3dB bandwidth (grey) along the tapered HC-PCF.

Fig. 3
Fig. 3

Tapered HC-PCF Raman spectra: (A) and (B) present the typical Raman spectrum (solid lines) and the HC-PCF transmission spectrum (dashed lines) at the start and the end of the tapered HC-PCF. The dotted grey lines indicate the spectral location of the higher order Stokes. (C) Same spectrum as in (B) in dB. In addition to the 3rd, 4th and 5th order Stokes (S3, S4 and S5) which are supported by the end section of the taper, the spectrum contains, a significant amount of output power remaining in the pump and lower-order Stokes lines (P, S1 and S2). (D) Intensity profile of each of the spectral components of the taper output spectrum.

Fig. 4
Fig. 4

Guided mode dispersion curves and density of photonic states of the 1064 nm section of the tapered HC-PCF.

Fig. 5
Fig. 5

Modal and spectral evolution of the Raman cascade in the tapered HC-PCF. A) Near-field mapping of each Raman component along the tapered HC-PCF. The dashed lines indicate qualitatively the transmission window boundaries at each length B) Schematic of density of states (white stands for null density of state) and modal behavior along the tapered HC-PCF.

Metrics