Abstract

Using resonator inserted with acousto-optically modulator, the experiments of the compacted CO2 laser were performed with Q-switch. According to various factors that influenced the output of laser, the theoretical calculation of its main parameters was conducted by Q-switched pulsed laser rate equations. Based on the results, the technical route and approach were presented for optimization design of this laser. The measured peak power of this laser device was more than 4000W and pulsed width was 180ns which agreed well with the theoretical calculation. The range of repetition frequency could adjust from 1 Hz to 100 kHz. The theoretical analyzes and experimental results showed that the acoustic traveling time of ultrasonic field could not influence the pulse width of laser so that it did not require inserting optical lens in the cavity to reduce the diameter of beam. The acoustic traveling time only extended the establishingtime of laser pulse. The optimum working frequency of laser is about 1 kHz, which it matched with the radiation life time (1 ms) of CO2 molecular upper energy level. When the frequency is above 1 kHz, the pulse width of laser increased with the frequency. The full band of wavelength tuning between 9.2 μm and 10.8μm was obtained by grating selection one by one which the measured spectrum lines were over 30 in the condition of Q-switch.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High repetition rates optically active langasite electro-optically Q-switched laser at 1.34 μm

Shihui Ma, Dazhi Lu, Haohai Yu, Huaijin Zhang, Xuekun Han, Qingming Lu, Changqin Ma, and Jiyang Wang
Opt. Express 25(20) 24007-24014 (2017)

Study of frequency stabilization for electro-optical Q-switched radio-frequency-excited waveguide CO2 laser using build-up time method

Yanchao Zhang, Zhaoshuo Tian, Zhenghe Sun, Lili Wang, and Qi Wang
Appl. Opt. 52(16) 3732-3736 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
    [Crossref]
  2. H. V. Piltingsrud, “CO2 laser for lidar application, producing two narrowly spaced independently wavelength-selectable Q-switched output pulses,” Appl. Opt. 30(27), 3952–3963 (1991).
    [Crossref] [PubMed]
  3. G. Pearson and B. J. Rye, “Frequency fidelity of a compact CO2 Doppler lidar transmitted,” Appl. Opt. 31(30), 6475–6484 (1992).
    [Crossref] [PubMed]
  4. C. W. Sun, Q. S. Lu, Z. X. Fan, Y. Z. Chen, C. F. Li, J. L. Guan, and C. W. Guan, Laser Irradiation Effect (Chinese) (National Defence Press, China Beijing 2002).
  5. J. J. Xie, D. J. Li, C. S. Zhang, L. M. Zhang, “A Tunable acousto-optical Q-switched pulsed CO2 laser,” (Chinese) 200810051433.4 (Nov 18, 2008).
  6. T. L. Wang, “Studies on mid-infrared tunable lasers,” Sept. 12, 2007, http://dlib.cnki.net/kns50/detail .
  7. J. J. Li, R. F. Wang, and W. Y. Chen, “An Acousto-optic Q-switched CO2 quasi-waveguide laser,” J. Laser. (Chinese) A22(2), 195–198 (1992).
  8. D. Letalick, I. Renhom, and A. Widen, “CO2 waveguide laser with programmable pulse profile,” Opt. Eng. 28(2), 172–179 (1989).
  9. X. J. Lan, and C. H. Zhu, Laser Technology (Chinese) (Science Press, China Beijing 2005).
  10. T. J. Bridges and P. K. Cheo, “Spontaneous self-pulsing and cavity dumping in a CO2 laser with electro-optic Q-switching,” Appl. Phys. Lett. 14(9), 262–264 (1969).
    [Crossref]
  11. R. J. Ralph, J. P. Kenneth, and J. T. Scott, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24(8), 375–377 (1974).
    [Crossref]
  12. P. K. Cheo, A. K. Levine, and A. J. Demarin, Relaxation Phenomena in Gases (Maroel Dekker, New York, 2002).

2003 (1)

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

1992 (2)

G. Pearson and B. J. Rye, “Frequency fidelity of a compact CO2 Doppler lidar transmitted,” Appl. Opt. 31(30), 6475–6484 (1992).
[Crossref] [PubMed]

J. J. Li, R. F. Wang, and W. Y. Chen, “An Acousto-optic Q-switched CO2 quasi-waveguide laser,” J. Laser. (Chinese) A22(2), 195–198 (1992).

1991 (1)

1989 (1)

D. Letalick, I. Renhom, and A. Widen, “CO2 waveguide laser with programmable pulse profile,” Opt. Eng. 28(2), 172–179 (1989).

1974 (1)

R. J. Ralph, J. P. Kenneth, and J. T. Scott, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24(8), 375–377 (1974).
[Crossref]

1969 (1)

T. J. Bridges and P. K. Cheo, “Spontaneous self-pulsing and cavity dumping in a CO2 laser with electro-optic Q-switching,” Appl. Phys. Lett. 14(9), 262–264 (1969).
[Crossref]

Bridges, T. J.

T. J. Bridges and P. K. Cheo, “Spontaneous self-pulsing and cavity dumping in a CO2 laser with electro-optic Q-switching,” Appl. Phys. Lett. 14(9), 262–264 (1969).
[Crossref]

Chen, W. Y.

J. J. Li, R. F. Wang, and W. Y. Chen, “An Acousto-optic Q-switched CO2 quasi-waveguide laser,” J. Laser. (Chinese) A22(2), 195–198 (1992).

Cheo, P. K.

T. J. Bridges and P. K. Cheo, “Spontaneous self-pulsing and cavity dumping in a CO2 laser with electro-optic Q-switching,” Appl. Phys. Lett. 14(9), 262–264 (1969).
[Crossref]

Hu, X. Y.

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Huang, J. Z.

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Kenneth, J. P.

R. J. Ralph, J. P. Kenneth, and J. T. Scott, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24(8), 375–377 (1974).
[Crossref]

Letalick, D.

D. Letalick, I. Renhom, and A. Widen, “CO2 waveguide laser with programmable pulse profile,” Opt. Eng. 28(2), 172–179 (1989).

Li, J. J.

J. J. Li, R. F. Wang, and W. Y. Chen, “An Acousto-optic Q-switched CO2 quasi-waveguide laser,” J. Laser. (Chinese) A22(2), 195–198 (1992).

Liu, F. M.

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Pearson, G.

Piltingsrud, H. V.

Qu, Y. C.

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Ralph, R. J.

R. J. Ralph, J. P. Kenneth, and J. T. Scott, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24(8), 375–377 (1974).
[Crossref]

Ren, D. M.

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Renhom, I.

D. Letalick, I. Renhom, and A. Widen, “CO2 waveguide laser with programmable pulse profile,” Opt. Eng. 28(2), 172–179 (1989).

Rye, B. J.

Scott, J. T.

R. J. Ralph, J. P. Kenneth, and J. T. Scott, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24(8), 375–377 (1974).
[Crossref]

Song, W. M.

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Wang, R. F.

J. J. Li, R. F. Wang, and W. Y. Chen, “An Acousto-optic Q-switched CO2 quasi-waveguide laser,” J. Laser. (Chinese) A22(2), 195–198 (1992).

Widen, A.

D. Letalick, I. Renhom, and A. Widen, “CO2 waveguide laser with programmable pulse profile,” Opt. Eng. 28(2), 172–179 (1989).

Zhang, L. L.

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. J. Bridges and P. K. Cheo, “Spontaneous self-pulsing and cavity dumping in a CO2 laser with electro-optic Q-switching,” Appl. Phys. Lett. 14(9), 262–264 (1969).
[Crossref]

R. J. Ralph, J. P. Kenneth, and J. T. Scott, “Rotational relaxation rate constants for CO2,” Appl. Phys. Lett. 24(8), 375–377 (1974).
[Crossref]

J. Laser. (Chinese) (1)

J. J. Li, R. F. Wang, and W. Y. Chen, “An Acousto-optic Q-switched CO2 quasi-waveguide laser,” J. Laser. (Chinese) A22(2), 195–198 (1992).

Opt. Eng. (1)

D. Letalick, I. Renhom, and A. Widen, “CO2 waveguide laser with programmable pulse profile,” Opt. Eng. 28(2), 172–179 (1989).

SPIE (1)

Y. C. Qu, D. M. Ren, X. Y. Hu, F. M. Liu, J. Z. Huang, L. L. Zhang, and W. M. Song, “A monolithic microprocessor controlled turing and triggering system of TEA CO2 laser for differential absorption lidar,” SPIE 4893, 377–383 (2003).
[Crossref]

Other (5)

X. J. Lan, and C. H. Zhu, Laser Technology (Chinese) (Science Press, China Beijing 2005).

P. K. Cheo, A. K. Levine, and A. J. Demarin, Relaxation Phenomena in Gases (Maroel Dekker, New York, 2002).

C. W. Sun, Q. S. Lu, Z. X. Fan, Y. Z. Chen, C. F. Li, J. L. Guan, and C. W. Guan, Laser Irradiation Effect (Chinese) (National Defence Press, China Beijing 2002).

J. J. Xie, D. J. Li, C. S. Zhang, L. M. Zhang, “A Tunable acousto-optical Q-switched pulsed CO2 laser,” (Chinese) 200810051433.4 (Nov 18, 2008).

T. L. Wang, “Studies on mid-infrared tunable lasers,” Sept. 12, 2007, http://dlib.cnki.net/kns50/detail .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The scheme of Q-switch
Fig. 2
Fig. 2 Experimental setup of programmable acousto-optically Q-switched CO2 laser
Fig. 3
Fig. 3 Photon number in the laser cavity versus time.
Fig. 4
Fig. 4 Transmission of intracavity optical elements versus establishing time of laser pulse.
Fig. 5
Fig. 5 Formation of Q-switch: (a) step function; (b) linear function.
Fig. 6
Fig. 6 Diagrams of laser pulse waveform for the different acoustic traveling time: (a) without the lens; (b) with the lens.
Fig. 7
Fig. 7 Laser pulse waveform.
Fig. 8
Fig. 8 Peak power and pulse width of laser versus the pulse frequency.
Fig. 9
Fig. 9 Laser pulse waveform, (a) optical iris diameter Φ = 4 mm; (b) optical iris diameter Φ = 5 mm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d ϕ d t = ( n J n J 1 ) ϕ + n J N t h V .
d n J d t = ( n J n J ) ϕ + ( P J n v n J ) k J .
d n J d t = ( n J n J ) ϕ + ( P J n v n J ) k J n J k .
d ( n v n J ) d t = ( n J P J n v ) k J .
d ( n v n J ) d t = ( n J P J n v ) k J ( n v n J ) k .
P J = ( 2 J + 1 ) Q r o t exp [ h c B J ( J + 1 ) k T ] .
n v = n J P J .
α ¯ = ln ( 1 / T T O T ) 2 L .
P o u t = ϕ h ν c α ¯ o u t N t h V .
Φ P ( t ) = Φ P ( 0 ) exp ( { 2 γ 0 l ln [ 1 R G T C 2 ( 1 T 0 ) ] } c t 2 L ) .
f = π d D / 4 λ , d = 2.55 v / f A O .

Metrics