Abstract

Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” N. J. Phys. 9(8), 254 (2007).
    [CrossRef]
  5. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
    [CrossRef]
  6. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  7. D. O. Güney, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
    [CrossRef] [PubMed]
  8. P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
    [CrossRef]
  9. W. J. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15(4), 1639–1646 (2007).
    [CrossRef] [PubMed]
  10. J. D. Baena, L. Jelinek, and R. Marques, “Towards systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B 76(24), 245115 (2007).
    [CrossRef]
  11. Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71(12), 121103 (2005).
    [CrossRef]
  12. A. Grbic and G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98(4), 043106 (2005).
    [CrossRef]
  13. P. Alitalo, S. Maslovski, and S. Tretyakov, “Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens,” J. Appl. Phys. 99(12), 124910 (2006).
    [CrossRef]
  14. R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett. 49(10), 2606–2609 (2007).
    [CrossRef]
  15. I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006).
    [CrossRef]
  16. C. B. Arnold and A. Pique, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
    [CrossRef]
  17. K. Sugioka, B. Gu, and A. Holmes, “The state of the art and future prospects for laser direct-write for industrial and commercial applications,” MRS Bull. 32, 47–54 (2007).
    [CrossRef]
  18. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [CrossRef]
  19. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
    [CrossRef] [PubMed]
  20. D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80(12), 125129 (2009).
    [CrossRef]
  21. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
    [CrossRef] [PubMed]
  22. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [CrossRef]
  23. Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
    [CrossRef]

2010 (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

2009 (2)

D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80(12), 125129 (2009).
[CrossRef]

D. O. Güney, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[CrossRef] [PubMed]

2008 (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

2007 (7)

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” N. J. Phys. 9(8), 254 (2007).
[CrossRef]

W. J. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15(4), 1639–1646 (2007).
[CrossRef] [PubMed]

J. D. Baena, L. Jelinek, and R. Marques, “Towards systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B 76(24), 245115 (2007).
[CrossRef]

R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett. 49(10), 2606–2609 (2007).
[CrossRef]

C. B. Arnold and A. Pique, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

K. Sugioka, B. Gu, and A. Holmes, “The state of the art and future prospects for laser direct-write for industrial and commercial applications,” MRS Bull. 32, 47–54 (2007).
[CrossRef]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
[CrossRef] [PubMed]

2006 (5)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

P. Alitalo, S. Maslovski, and S. Tretyakov, “Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens,” J. Appl. Phys. 99(12), 124910 (2006).
[CrossRef]

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (4)

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71(12), 121103 (2005).
[CrossRef]

A. Grbic and G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98(4), 043106 (2005).
[CrossRef]

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

2002 (2)

R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Alitalo, P.

P. Alitalo, S. Maslovski, and S. Tretyakov, “Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens,” J. Appl. Phys. 99(12), 124910 (2006).
[CrossRef]

Arnold, C. B.

C. B. Arnold and A. Pique, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

Baena, J. D.

J. D. Baena, L. Jelinek, and R. Marques, “Towards systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B 76(24), 245115 (2007).
[CrossRef]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dolling, G.

Economou, E. N.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98(4), 043106 (2005).
[CrossRef]

Enkrich, C.

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98(4), 043106 (2005).
[CrossRef]

Greegor, R. B.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

Gu, B.

K. Sugioka, B. Gu, and A. Holmes, “The state of the art and future prospects for laser direct-write for industrial and commercial applications,” MRS Bull. 32, 47–54 (2007).
[CrossRef]

Guney, D. O.

D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80(12), 125129 (2009).
[CrossRef]

Güney, D. O.

Holmes, A.

K. Sugioka, B. Gu, and A. Holmes, “The state of the art and future prospects for laser direct-write for industrial and commercial applications,” MRS Bull. 32, 47–54 (2007).
[CrossRef]

Jelinek, L.

J. D. Baena, L. Jelinek, and R. Marques, “Towards systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B 76(24), 245115 (2007).
[CrossRef]

R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett. 49(10), 2606–2609 (2007).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

Kolmakov, I.

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006).
[CrossRef]

Koschny, Th.

D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80(12), 125129 (2009).
[CrossRef]

D. O. Güney, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[CrossRef] [PubMed]

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71(12), 121103 (2005).
[CrossRef]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Leonhardt, U.

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” N. J. Phys. 9(8), 254 (2007).
[CrossRef]

Linden, S.

Markos, P.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Marques, R.

J. D. Baena, L. Jelinek, and R. Marques, “Towards systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B 76(24), 245115 (2007).
[CrossRef]

R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett. 49(10), 2606–2609 (2007).
[CrossRef]

Martin, O. J. F.

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

Maslovski, S.

P. Alitalo, S. Maslovski, and S. Tretyakov, “Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens,” J. Appl. Phys. 99(12), 124910 (2006).
[CrossRef]

Mesa, F.

R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett. 49(10), 2606–2609 (2007).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nielsen, J. A.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

Odit, M.

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006).
[CrossRef]

Padilla, W. J.

Parazzoli, C. G.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” N. J. Phys. 9(8), 254 (2007).
[CrossRef]

Pique, A.

C. B. Arnold and A. Pique, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Schultz, S.

R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

Smith, R.

R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Soukoulis, C. M.

D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80(12), 125129 (2009).
[CrossRef]

D. O. Güney, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71(12), 121103 (2005).
[CrossRef]

R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Sugioka, K.

K. Sugioka, B. Gu, and A. Holmes, “The state of the art and future prospects for laser direct-write for industrial and commercial applications,” MRS Bull. 32, 47–54 (2007).
[CrossRef]

Tanielian, M. H.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Thompson, M. A.

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

Tretyakov, S.

P. Alitalo, S. Maslovski, and S. Tretyakov, “Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens,” J. Appl. Phys. 99(12), 124910 (2006).
[CrossRef]

Vendik, I.

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006).
[CrossRef]

Vendik, O.

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006).
[CrossRef]

Vier, D. C.

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

Zhang, L.

Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71(12), 121103 (2005).
[CrossRef]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005).
[CrossRef]

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

J. Appl. Phys. (2)

A. Grbic and G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98(4), 043106 (2005).
[CrossRef]

P. Alitalo, S. Maslovski, and S. Tretyakov, “Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens,” J. Appl. Phys. 99(12), 124910 (2006).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett. 49(10), 2606–2609 (2007).
[CrossRef]

MRS Bull. (2)

C. B. Arnold and A. Pique, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

K. Sugioka, B. Gu, and A. Holmes, “The state of the art and future prospects for laser direct-write for industrial and commercial applications,” MRS Bull. 32, 47–54 (2007).
[CrossRef]

N. J. Phys. (1)

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” N. J. Phys. 9(8), 254 (2007).
[CrossRef]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Opto-Electron. Rev. (1)

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006).
[CrossRef]

Phys. Rev. B (5)

D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80(12), 125129 (2009).
[CrossRef]

J. D. Baena, L. Jelinek, and R. Marques, “Towards systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B 76(24), 245115 (2007).
[CrossRef]

Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71(12), 121103 (2005).
[CrossRef]

R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic building block of the 3D isotropic intra-connected metamaterial structure consisting of a four-gap SRR connected diagonally to an outer square frame, all metal (Au) in a vacuum background. r 1 = 65nm (inner ring radius), r 2 = 128nm (outer ring radius), l = 289nm (frame length), tc = 8nm (connector thickness), tf = 3nm (frame thickness), and d = 3nm (gap width).

Fig. 2
Fig. 2

Unit cell (a) and the 3 × 3 × 3 bulk (b) illustration of the designed intra-connected isotropic NIM structure. Full connectivity is achieved by diagonal connectors and square frames.

Fig. 3
Fig. 3

Retrieved effective parameters n, ε, and μ for a single-unit-cell (a-c) and for a different number of unit cells up to four (d-f), using the homogeneous effective medium approximation. The solid curves indicate real parts and the dashed curves indicate imaginary parts. In the bottom panels, black, red, green, and blue correspond to 1-4 unit cells, respectively.

Fig. 4
Fig. 4

Total current density distribution around magnetic resonance in logarithmic scale. Size and color of the arrows give the magnitude of the current density at the given position. The background color shows the vertical component of the total current density (orange up, blue down, and green 0). Black arrows are drawn for clarification to improve the readability of the direction of color arrows at the corresponding locations. The Incident field configuration is shown on the left.

Metrics