Abstract

In this article, the utility of structured illumination in order to enhance the contrast and subsequent range capability of an underwater imaging system is explored. The proposed method consists of transmitting a short pulse of light in a grid like pattern that consists of multiple, narrow, delta-function like beams. The grid pattern can be arranged in either a one-dimensional line or an area as a two-dimensional pattern. Scanning the pattern in time results in the sequential illumination of the entire scene. The receiving system architecture imposes the exact same, grid-like pattern sensitivity on the reflected light with a simple subsequent superposition of the time-sequenced images. The system can be viewed as a parallel implementation of a Laser Line Scan System where multiple beams are projected and received instead of a single one. The performance enhancement over more conventional systems that project either a sheet or an area of light is compared for a challenging underwater environment via computer simulations. The resulting images are analyzed as a function of the spacing between the projected light beams to characterize contrast and resolution. The results indicate that reasonable gains are obtainable for close spacing between the beams while quite significant gains are predicted for larger ones. Structured illumination systems can therefore collect images more rapidly than systems that scan a single beam; however with concomitant trade-offs in contrast and resolution.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance bounds on synchronous laser line scan systems

Jules S. Jaffe
Opt. Express 13(3) 738-748 (2005)

Development and testing of a synchronous-scanning underwater imaging system capable of rapid two-dimensional frame imaging

Thomas J. Kulp, Darrel Garvis, Randall Kennedy, Tom Salmon, and Keith Cooper
Appl. Opt. 32(19) 3520-3530 (1993)

Calibration and 3D reconstruction of underwater objects with non-single-view projection model by structured light stereo imaging

Yexin Wang, Shahriar Negahdaripour, and Murat D. Aykin
Appl. Opt. 55(24) 6564-6575 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Q. Duntley, “Light in the Sea,” J. Opt. Soc. Am. 53(2), 214 (1963).
    [Crossref]
  2. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters, (Academic Press, 1994).
  3. K. S. Shifrin, Physical Optics of Ocean Water, (American Institute of Physics, 1988).
  4. J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater Optical Imaging: Status and Prospects,” Oceanography (Wash. D.C.) 14, 64–75 (2001).
  5. J. S. Jaffe, “Performance bounds on synchronous laser line scan systems,” Opt. Express 13(3), 738–748 (2005).
    [Crossref] [PubMed]
  6. M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
    [Crossref]
  7. J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging”, IEEE. J. Ocean Eng. 15(2), 101–111 (1990).
    [Crossref]
  8. J. S. Jaffe, “Monte Carlo modeling of underwater-image formation: validity of the linear and small-scale approximations,” Appl. Opt. 34(24), 5413–5421 (1995).
    [Crossref] [PubMed]
  9. B. J. McGlamery, B., “A computer model for underwater camera systems” in Ocean Optics VI, S. Q. Duntley, Ed., SPIE, 28, (1979).
  10. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium, (Springer Verlag, Heidelberg, 1991).
  11. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32(15), 2803–2812 (1993).
    [Crossref] [PubMed]
  12. I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. 14(6), 1338–1346 (1997).
    [Crossref]
  13. E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to Multiple Scattering,” Appl. Phys. B 60(4), 345–353 (1995).
    [Crossref]
  14. T. E. Giddings and J. J. Shirron, “Numerical simulation of the incoherent electro-optical imaging process in plane stratified media,” Opt. Eng. 48(12), 1–13 (2009).
    [Crossref]
  15. R. M. Mersereau, “The processing of hexagonally sampled two-dimensional signals,” Proc. IEEE 67(6), 930–949 (1979).
    [Crossref]

2009 (1)

T. E. Giddings and J. J. Shirron, “Numerical simulation of the incoherent electro-optical imaging process in plane stratified media,” Opt. Eng. 48(12), 1–13 (2009).
[Crossref]

2005 (1)

2001 (1)

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater Optical Imaging: Status and Prospects,” Oceanography (Wash. D.C.) 14, 64–75 (2001).

1997 (2)

I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. 14(6), 1338–1346 (1997).
[Crossref]

M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997).
[Crossref]

1995 (2)

J. S. Jaffe, “Monte Carlo modeling of underwater-image formation: validity of the linear and small-scale approximations,” Appl. Opt. 34(24), 5413–5421 (1995).
[Crossref] [PubMed]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to Multiple Scattering,” Appl. Phys. B 60(4), 345–353 (1995).
[Crossref]

1993 (1)

1990 (1)

J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging”, IEEE. J. Ocean Eng. 15(2), 101–111 (1990).
[Crossref]

1979 (1)

R. M. Mersereau, “The processing of hexagonally sampled two-dimensional signals,” Proc. IEEE 67(6), 930–949 (1979).
[Crossref]

1963 (1)

Duntley, S. Q.

Giddings, T. E.

T. E. Giddings and J. J. Shirron, “Numerical simulation of the incoherent electro-optical imaging process in plane stratified media,” Opt. Eng. 48(12), 1–13 (2009).
[Crossref]

Jaffe, J. S.

J. S. Jaffe, “Performance bounds on synchronous laser line scan systems,” Opt. Express 13(3), 738–748 (2005).
[Crossref] [PubMed]

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater Optical Imaging: Status and Prospects,” Oceanography (Wash. D.C.) 14, 64–75 (2001).

J. S. Jaffe, “Monte Carlo modeling of underwater-image formation: validity of the linear and small-scale approximations,” Appl. Opt. 34(24), 5413–5421 (1995).
[Crossref] [PubMed]

J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging”, IEEE. J. Ocean Eng. 15(2), 101–111 (1990).
[Crossref]

Juskaitis, R.

Katsev, I. L.

I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. 14(6), 1338–1346 (1997).
[Crossref]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to Multiple Scattering,” Appl. Phys. B 60(4), 345–353 (1995).
[Crossref]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32(15), 2803–2812 (1993).
[Crossref] [PubMed]

McLean, J.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater Optical Imaging: Status and Prospects,” Oceanography (Wash. D.C.) 14, 64–75 (2001).

Mersereau, R. M.

R. M. Mersereau, “The processing of hexagonally sampled two-dimensional signals,” Proc. IEEE 67(6), 930–949 (1979).
[Crossref]

Moore, K. D.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater Optical Imaging: Status and Prospects,” Oceanography (Wash. D.C.) 14, 64–75 (2001).

Neil, M. A.

Polonsky, I. N.

I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. 14(6), 1338–1346 (1997).
[Crossref]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to Multiple Scattering,” Appl. Phys. B 60(4), 345–353 (1995).
[Crossref]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32(15), 2803–2812 (1993).
[Crossref] [PubMed]

Prikhach, A. S.

I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. 14(6), 1338–1346 (1997).
[Crossref]

Shirron, J. J.

T. E. Giddings and J. J. Shirron, “Numerical simulation of the incoherent electro-optical imaging process in plane stratified media,” Opt. Eng. 48(12), 1–13 (2009).
[Crossref]

Strand, M. P.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater Optical Imaging: Status and Prospects,” Oceanography (Wash. D.C.) 14, 64–75 (2001).

Wilson, T.

Zege, E. P.

I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. 14(6), 1338–1346 (1997).
[Crossref]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to Multiple Scattering,” Appl. Phys. B 60(4), 345–353 (1995).
[Crossref]

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32(15), 2803–2812 (1993).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

E. P. Zege, I. L. Katsev, and I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to Multiple Scattering,” Appl. Phys. B 60(4), 345–353 (1995).
[Crossref]

IEEE. J. Ocean Eng. (1)

J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging”, IEEE. J. Ocean Eng. 15(2), 101–111 (1990).
[Crossref]

J. Opt. Soc. Am. (2)

I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. 14(6), 1338–1346 (1997).
[Crossref]

S. Q. Duntley, “Light in the Sea,” J. Opt. Soc. Am. 53(2), 214 (1963).
[Crossref]

Oceanography (Wash. D.C.) (1)

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater Optical Imaging: Status and Prospects,” Oceanography (Wash. D.C.) 14, 64–75 (2001).

Opt. Eng. (1)

T. E. Giddings and J. J. Shirron, “Numerical simulation of the incoherent electro-optical imaging process in plane stratified media,” Opt. Eng. 48(12), 1–13 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

R. M. Mersereau, “The processing of hexagonally sampled two-dimensional signals,” Proc. IEEE 67(6), 930–949 (1979).
[Crossref]

Other (4)

B. J. McGlamery, B., “A computer model for underwater camera systems” in Ocean Optics VI, S. Q. Duntley, Ed., SPIE, 28, (1979).

E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium, (Springer Verlag, Heidelberg, 1991).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters, (Academic Press, 1994).

K. S. Shifrin, Physical Optics of Ocean Water, (American Institute of Physics, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Resultant images for different illumination strategies. (a) An area. (b) A line scanned in one-dimension perpendicular to the line. (c) A point scanned in 2-dimensions.

Fig. 2
Fig. 2

A block diagram of the proposed hardware configuration

Fig. 3
Fig. 3

Point Spread Functions for the simulations as imaged by the camera. The blue curve is the light incident on the target from a narrow, one mrad., projected beam. The red curve is the scattered light after reflection. The sum of the two quantities is the PSF. (a) one attenuation length (b) 3 attenuation lengths (c) 5 attenuation lengths (d) 7 attenuation lengths. Vertical units are watts/m2 incident on the camera. Horizontal units are view 4.1 mrad. / pixel.

Fig. 4
Fig. 4

The sampling geometry embodied in Eq. (5). The figure illustrates a two-dimensional field of delta functions with spacing ΔSx in the x direction and ΔSy in the y direction with. Note that here Δx = 1 and Δy = 1 as the delta function grid is shifted by one unit in each direction.

Fig. 5
Fig. 5

Several before and after images that show the results of the normalization. (a) The resulting image from (Δsx = 25); (b) After normalization; (c) Resulting image from (Δsx Δsy) = (25,25); (d) After normalization.

Fig. 6
Fig. 6

A graph of the values across a row for the radial spoke image at (Δsx = 25) as a function of attenuation length.

Fig. 7
Fig. 7

Contour diagrams for the (a) row and (b) column contrast values.

Fig. 8
Fig. 8

The contour diagram for the two-dimensional contrast values

Fig. 9
Fig. 9

Impulse response to a numerical delta function located at the center of the image for the 1-dimensional case as a function of spacing.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulation to determine the Point Spread Function

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = I ( r 0 ) e c ( r r 0 ) = I ( r o ) e ( a + b ) ( r r o ) .
b = 4 π b ( θ ) d ω .
1 4 π 4 π β ( θ ) d ω = 1.
I ( x , y ) = w R ( x 2 , y 2 ) p s f ( x 1 , y 1 , x 2 , y 2 : d ) p s f ( x 0 , y 0 , x 1 , y 1 : d ) w T ( x 0 , y 0 ) .....
T ( x - x 1 , y - y 1 ) d x 0 d y 0 d x 1 d y 1 d x 2 d y 2 .
w t = w r = Π 2 ( Δ x , Δ y , Δ s x , Δ s y ) = m = 0 m max 1 n = 0 n max 1 δ ( x ' Δ x n Δ s x , y ' Δ y m Δ s y ) .
w t = w r = Π 2 ( Δ x , Δ s x ) = δ ( x ' Δ x n Δ s x )
I 2 ( x , y ) = Δ y = 0 ( m 1 ) Δ s y Δ x = 0 ( n 1 ) Δ s x I ( Δ x + m Δ s x , Δ y + n Δ s y ) .
I 1 ( x , y ) = Δ x = 0 ( n 1 ) Δ s x I ( Δ x + m Δ s x | y ) .
I 1 ( x , y ) = y min y max Δ x = 0 ( n 1 ) Δ s x I ( Δ x + m Δ s x | y ) .

Metrics