Abstract

Compound eye is a new field of research about miniaturizing imaging systems. We for the first time introduce a dual compound eye that contains three micro lens arrays with aspheric surfaces. The designed dual compound eye in one state is a superposition system in which each channel images all of field of view of the system. With adding a field stop we have decreased the stray light. MTF of ideal superposition compound eye calculated. Also with changing field stop the system is converted to an apposition compound eye in which each channel images only a part of total field of view and so the field of view is larger than that of superposition type.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
    [CrossRef]
  2. J. Duparré, P. Schreiber, and R. Völkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra at digital image acquisition devices,” in Optical systems design, Proc. SPIE 5249, SPIE, (St. Etienne, France), September 2003.
  3. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13(3), 889–903 (2005).
    [CrossRef] [PubMed]
  4. H. R. Fallah and A. Karimzadeh, “Design and Simulation of a high resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
    [CrossRef]
  5. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351–359 (2002).
    [CrossRef]
  6. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

2007

H. R. Fallah and A. Karimzadeh, “Design and Simulation of a high resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[CrossRef]

2005

2003

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

2002

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351–359 (2002).
[CrossRef]

Bräuer, A.

Duparré, J.

Eisner, M.

Fallah, H. R.

H. R. Fallah and A. Karimzadeh, “Design and Simulation of a high resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[CrossRef]

Karimzadeh, A.

H. R. Fallah and A. Karimzadeh, “Design and Simulation of a high resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[CrossRef]

Lindlein, N.

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351–359 (2002).
[CrossRef]

Matthes, A.

Pshenay-Severin, E.

Scharf, T.

Schreiber, P.

Tünnermann, A.

Völkel, R.

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

J. Mod. Opt.

H. R. Fallah and A. Karimzadeh, “Design and Simulation of a high resolution superposition compound eye,” J. Mod. Opt. 54(1), 67–76 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351–359 (2002).
[CrossRef]

Microelectron. Eng.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Opt. Express

Other

J. Duparré, P. Schreiber, and R. Völkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra at digital image acquisition devices,” in Optical systems design, Proc. SPIE 5249, SPIE, (St. Etienne, France), September 2003.

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Compound eye layout.

Fig. 2
Fig. 2

a) Layout of superposition compound eye, b) Field stop for decreasing veiling glares (Colored areas are field stops).

Fig. 3
Fig. 3

MTF of one channel of superposition compound eye.

Fig. 4
Fig. 4

a ) λ α f 2 r < 1 , b ) 1 < λ α f 2 r < 2 , c ) 2 < λ α f 2 r < 3

Fig. 5
Fig. 5

Diffraction MTF diagram for a) one channel, b) superposition compound eye.

Fig. 6
Fig. 6

a) Field stop for converting system to apposition eye and decreasing veiling glare (Colored areas are field stops), b)Layout of apposition compound eye.

Tables (1)

Tables Icon

Table 1 One channel surfaces specifications

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

B = ( - t / f 1 f 1 + t ( 1 f 1 / f f ) N t x N p 1 ( t f 2 ) / f 1 f 2 f 1 / f 2 ( t f 2 ) ( 1 f 1 / f f ) / f 2 N ( f 2 t ) x / f 2 + N y 0 0 1 ) in which x = ( p 1 - p f ) / f f , y = ( p 1 - p 2 ) / f 2
( h o u t θ o u t 1 ) = A ( h i n θ i n 1 ) = ( 1 L 0 0 0 0 0 0 1 ) B ( h i n θ i n 1 ) where   A = ( 1 L 0 0 0 0 0 0 1 ) B
A 11 = 0 , A 13 = 0 f 2 = p 2 p 1 t , L = p 2 p 1 - p 2 t
B 12 = 0 , B 13 = N ( p 1 - p 2 ) f f = t f 1 t + f 1 , p f = p 1 - ( p 1 p 2 ) t t + f 1
F O V 2 f 1 + N max ( p 1 - p f ) = p f 2
F O V 2 + N ( p 1 p f ) = p f 2
D = f 1 f 2 t - f 2 F O V
M T F ( α , β ) = p ( x + α f λ 2 , y + β f λ 2 ) p * ( x α f λ 2 , y β f λ 2 ) d x d y p ( x , y ) d x d y
M T F ( α , 0 ) = 9 ( 2 r 2 cos 1 ( λ α f 2 r ) - 2 r 2 ( λ α f 2 r ) 1 - ( λ α f 2 r ) 2 ) + 6 ( 2 r 2 cos 1 ( 1 - λ α f 2 r ) - 2 r 2 ( 1 - λ α f 2 r ) 1 - ( 1 - λ α f 2 r ) 2 ) 9 π r 2 = 2 π ( cos 1 ( λ α f 2 r ) - ( λ α f 2 r ) 1 - ( λ α f 2 r ) 2 ) + 2 3 ( cos 1 ( 1 - λ α f 2 r ) - 2 3 ( 1 - λ α f 2 r ) 1 - ( 1 - λ α f 2 r ) 2 )
M T F ( α , 0 ) = 2 π ( cos 1 ( λ α f 2 r ) - ( λ α f 2 r ) 1 - ( λ α f 2 r ) 2 )
M T F ( α , 0 ) = 6 ( 2 r 2 cos 1 ( λ α f 2 r 1 ) 2 r 2 ( λ α f 2 r 1 ) 1 ( λ α f 2 r 1 ) 2 ) + 3 ( 2 r 2 cos 1 ( 2 λ α f 2 r ) 2 r 2 ( 2 λ α f 2 r ) 1 ( 2 λ α f 2 r ) 2 ) 9 π r 2
M T F ( α , 0 ) = 2 3 π ( cos 1 ( λ α f 2 r - 2 ) - ( λ α f 2 r - 2 ) 1 - ( λ α f 2 r - 2 ) 2 )

Metrics