Abstract

We propose a widely tunable dual-wavelength Erbium-doped fiber laser that uses two micro-heater-integrated Fabry-Perot laser diodes (FP-LDs) and two fiber Bragg gratings (FBGs) for tunable continuous-wave (CW) terahertz (THz) radiation. Each wavelength can be independently tuned by using an FP-LD and an FBG. The wavelength fine tuning is achieved by simultaneously applying current to the micro-heater on the FP-LD and strain to the FBG. The side-mode suppression ratio is more than 35 dB for both wavelengths. The wavelength spacing of the dual wavelength can be continuously tuned from 3.2 nm to 9.6 nm. Continuous frequency tuning of the CW THz radiation is also successfully achieved using an InGaAs-based photomixer with our dual-wavelength fiber laser as the optical beat source. The emitted CW THz radiation is continuously tuned from 0.3 to 0.8 THz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef]
  3. N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
    [CrossRef]
  4. J. R. Demers, R. T. Logan Jr, and E. R. Brown, “An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB,” Microwave Photonics Tech. Digest, Victoria, Canada, pp. 92–95 (2007).
  5. P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
    [CrossRef]
  6. R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
    [CrossRef]
  7. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
    [CrossRef]
  8. S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
    [CrossRef]
  9. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17(16), 13851–13859 (2009).
    [CrossRef] [PubMed]
  10. H. Li, H. Ding, and K. T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett. 33(1), 52–53 (1997).
    [CrossRef]
  11. S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
    [CrossRef]
  12. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
    [CrossRef]
  13. J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
    [CrossRef]
  14. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16(16), 11830–11835 (2008).
    [CrossRef] [PubMed]
  15. S. L. Pan, X. F. Zhao, and C. Y. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
    [CrossRef] [PubMed]
  16. C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
    [CrossRef]
  17. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
    [CrossRef]
  18. P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
    [CrossRef]
  19. H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
    [CrossRef]
  20. S. Pan and J. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
    [CrossRef] [PubMed]
  21. S. L. Pan and J. P. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express 17(14), 12167–12173 (2009).
    [CrossRef] [PubMed]
  22. P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
    [CrossRef]
  23. R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
    [CrossRef]
  24. M. L. Dennis, R. M. Sova, and T. R. Clark, “Microwave frequency generation up to 27.5 GHz using a dualwavelength Brillouin fiber laser,” 2007 Dig. IEEE LEOS Summer Topical Mtg., 195–195 (2007).
  25. C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous, “All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers,” Opt. Express 13(23), 9639–9644 (2005).
    [CrossRef] [PubMed]

2009 (6)

N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17(16), 13851–13859 (2009).
[CrossRef] [PubMed]

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

S. Pan and J. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
[CrossRef] [PubMed]

S. L. Pan and J. P. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express 17(14), 12167–12173 (2009).
[CrossRef] [PubMed]

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

2008 (6)

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
[CrossRef]

S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16(16), 11830–11835 (2008).
[CrossRef] [PubMed]

S. L. Pan, X. F. Zhao, and C. Y. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33(8), 764–766 (2008).
[CrossRef] [PubMed]

C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[CrossRef]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
[CrossRef]

2005 (1)

2004 (1)

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

1999 (1)

R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

1998 (1)

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

1997 (1)

H. Li, H. Ding, and K. T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett. 33(1), 52–53 (1997).
[CrossRef]

1996 (2)

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

Allen, C.

R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Baker, C.

Baron, P.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Chaboyer, Z. J.

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

Chan, K. T.

H. Li, H. Ding, and K. T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett. 33(1), 52–53 (1997).
[CrossRef]

Chen, D.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[CrossRef]

Chi, S.

C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
[CrossRef]

Chow, C. W.

C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
[CrossRef]

Das, G.

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

Demarest, K.

R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Ding, H.

H. Li, H. Ding, and K. T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett. 33(1), 52–53 (1997).
[CrossRef]

Ellison, B. N.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
[CrossRef]

Erbert, G.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Evans, M. J.

Feng, S.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Fricke, J.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Fu, H.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[CrossRef]

Fukunaga, K.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Gregory, I. S.

Gu, P.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

He, S.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[CrossRef]

Hidaka, T.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Hong, J.

R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Hosako, N.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Hotate, K.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

Huggard, P. G.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
[CrossRef]

Hui, R.

R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Hyodo, M.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Jang, Y.

Jeon, M. Y.

Jia, C.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Jian, S.

Kasai, Y.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Kim, C. S.

R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
[CrossRef]

Kim, J. R.

R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
[CrossRef]

Kim, N.

Kim, R. K.

R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
[CrossRef]

Klehr, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Knauer, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Koch, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Lee, C. W.

Lee, K. S.

R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
[CrossRef]

Li, H.

H. Li, H. Ding, and K. T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett. 33(1), 52–53 (1997).
[CrossRef]

Linfield, E. H.

Liu, B.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Liu, J.

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Liu, W.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[CrossRef]

Lou, C. Y.

Lu, S.

Luo, J.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Ma, X.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Mao, X.

Mendrok, J.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Mikulics, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Missous, M.

Moore, P. J.

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

Ning, T.

O’Brien, S.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
[CrossRef]

O’Reilly, E. P.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
[CrossRef]

Ochiai, S.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Osborne, S.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
[CrossRef]

Pan, S.

Pan, S. L.

Park, K. H.

Park, K. N.

R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
[CrossRef]

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

Patrashin, M.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Saito, S.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Sakai, K.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Sekine, N.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Seta, T.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Shih, F. Y.

C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
[CrossRef]

Shin, J.

Sim, E.

Sun, J.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Tani, M.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tribe, W. R.

Walther, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Wang, C. H.

C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
[CrossRef]

Wang, S.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Wei, Y.

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[CrossRef]

Wilk, R.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

Xu, O.

Yamashita, S.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

Yao, J.

S. Pan and J. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
[CrossRef] [PubMed]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yao, J. P.

Yasuda, H.

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Yeap, T. H.

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Yee, D.-S.

Yeh, C. H.

C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
[CrossRef]

Zhang, H.

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Zhao, X. F.

Zhu, B.

R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Electron. Lett. (4)

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296–298 (2008).
[CrossRef]

H. Li, H. Ding, and K. T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett. 33(1), 52–53 (1997).
[CrossRef]

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44(7), 459–461 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. Hui, B. Zhu, K. Demarest, C. Allen, and J. Hong, “Generation of Ultrahigh-Speed Tunable-Rate Optical Pulses Using Strongly Gain-Coupled Dual-Wavelength DFB Laser Diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8(11), 1459–1461 (1996).
[CrossRef]

J. Liu, J. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Laser Phys. Lett. (1)

C. H. Yeh, F. Y. Shih, C. H. Wang, C. W. Chow, and S. Chi, “Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output,” Laser Phys. Lett. 5(11), 821–824 (2008).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Commun. (2)

H. Zhang, B. Liu, J. Luo, J. Sun, X. Ma, C. Jia, and S. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

R. K. Kim, C. S. Kim, K. N. Park, J. R. Kim, and K. S. Lee, “Wavelength-switchable erbium-doped fiber ring laser combined with a Fabry-Perot laser diode and a sampled grating,” Opt. Commun. 273(1), 28–31 (2007).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (2)

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Opt. Fiber Technol. 15(4), 377–379 (2009).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

N. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Other (2)

J. R. Demers, R. T. Logan Jr, and E. R. Brown, “An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB,” Microwave Photonics Tech. Digest, Victoria, Canada, pp. 92–95 (2007).

M. L. Dennis, R. M. Sova, and T. R. Clark, “Microwave frequency generation up to 27.5 GHz using a dualwavelength Brillouin fiber laser,” 2007 Dig. IEEE LEOS Summer Topical Mtg., 195–195 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration for dual-wavelength operation

Fig. 2
Fig. 2

(a) Optical spectrum of FP-LD1 with injection current of 20 mA, and, (b) output spectra of FP-LD1 at operation current of 20 mA and various currents for μ-heater

Fig. 3
Fig. 3

Output spectra of widely tuned wavelengths according to strained FBGs

Fig. 4
Fig. 4

Output spectra of finely and continuously tuned dual wavelengths from fiber laser

Fig. 5
Fig. 5

Experimental setup for CW THz generation using LTG-InGaAs photomixer based on dual-wavelength fiber laser

Fig. 6
Fig. 6

Continuous tuning of CW THz emission using LTG-InGaAs photomixer with dual-wavelength fiber laser. (Inset: square-law property of bias dependent THz output power at input beating frequency of 0.4 THz.)

Metrics