Abstract

The presence of absorption losses softens the singular behavior of transmission resonances and leads to a good image in spite of limited effective spatial frequency range. Nonetheless, we found that the phase singularity does not disappear despite the considerably reduced retardation effects by softening the transmission resonances. Because the phase singularity severely deteriorates the ideal image reconstruction, broad transmission bandwidth in spatial frequency domain is not sufficient enough to achieve superresolution in TiO2 thin film lens. The present work predicts successful elimination of the phase singularity and the achievement of ~ λ/12.9 superresolution in TiO2 thin film lens through the phase correction method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
    [CrossRef] [PubMed]
  4. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
    [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  6. X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, "Broadband super-resolution imaging by a superlens with unmatched dielectric medium," Opt. Express 16, 19686-19694 (2008), http://www. opticsinfobase.org/abstract.cfm?uri=oe-16-24-19686.
    [CrossRef] [PubMed]
  7. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  8. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
    [CrossRef] [PubMed]
  9. R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
  10. A. Grbic, L. Jiang, and R. Merlin, "Near-field plates: subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).
    [CrossRef] [PubMed]
  11. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).
    [CrossRef] [PubMed]
  12. K. Lee, H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Opt. Express 16, 1711-1718 (2008), http://www.opticsinfobase.org/ abstract.cfm?URI=OE-16-3-1711.
    [CrossRef] [PubMed]
  13. K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
    [CrossRef]
  14. K. Lee, Y. Jung, and K. Kim, "Near-field phase correction for superresolution enhancement," Phys. Rev. B 80, 033109 (2009).
    [CrossRef]
  15. D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006).
    [CrossRef]
  16. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
    [CrossRef]
  17. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
    [CrossRef]
  18. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
    [CrossRef]
  19. D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).
  20. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985)
  21. F. Gervais and B. Piriou, "Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile)," Phys. Rev. B 10, 1642-1654 (1974).
    [CrossRef]
  22. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," J. Opt. Soc. Am. A 25, 911-918 (2008).
    [CrossRef]

2009 (2)

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

K. Lee, Y. Jung, and K. Kim, "Near-field phase correction for superresolution enhancement," Phys. Rev. B 80, 033109 (2009).
[CrossRef]

2008 (4)

2007 (1)

D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).

2006 (2)

D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006).
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

2004 (1)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

2003 (2)

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

2002 (3)

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

2000 (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

1974 (1)

F. Gervais and B. Piriou, "Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile)," Phys. Rev. B 10, 1642-1654 (1974).
[CrossRef]

Arnold, M. D.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Blaikie, R. J.

C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," J. Opt. Soc. Am. A 25, 911-918 (2008).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

Bones, P. J.

Cui, J.

Eleftheriades, G. V.

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Gervais, F.

F. Gervais and B. Piriou, "Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile)," Phys. Rev. B 10, 1642-1654 (1974).
[CrossRef]

Grbic, A.

A. Grbic, L. Jiang, and R. Merlin, "Near-field plates: subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).
[CrossRef] [PubMed]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

Jiang, L.

A. Grbic, L. Jiang, and R. Merlin, "Near-field plates: subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).
[CrossRef] [PubMed]

Jung, Y.

K. Lee, Y. Jung, and K. Kim, "Near-field phase correction for superresolution enhancement," Phys. Rev. B 80, 033109 (2009).
[CrossRef]

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Kang, G.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

Kim, K.

K. Lee, Y. Jung, and K. Kim, "Near-field phase correction for superresolution enhancement," Phys. Rev. B 80, 033109 (2009).
[CrossRef]

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Korobkin, D.

D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006).
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Lee, K.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

K. Lee, Y. Jung, and K. Kim, "Near-field phase correction for superresolution enhancement," Phys. Rev. B 80, 033109 (2009).
[CrossRef]

Liu, Y.

Luo, X.

Ma, J.

Markley, L.

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef] [PubMed]

McNab, S. J.

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

Melville, D. O. S.

D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).

Merlin, R.

A. Grbic, L. Jiang, and R. Merlin, "Near-field plates: subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).
[CrossRef] [PubMed]

Moore, C. P.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Park, H.

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Piriou, B.

F. Gervais and B. Piriou, "Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile)," Phys. Rev. B 10, 1642-1654 (1974).
[CrossRef]

Ramakrishna, S. A.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
[CrossRef]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
[CrossRef]

Shvets, G.

D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006).
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006).
[CrossRef]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Wang, C.

Wang, W.

Wang, Y.

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef] [PubMed]

Wong, A. M. H.

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef] [PubMed]

Xing, H.

Yang, X.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003).
[CrossRef]

N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Microelectron. Eng. (1)

R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

K. Lee, Y. Jung, and K. Kim, "Near-field phase correction for superresolution enhancement," Phys. Rev. B 80, 033109 (2009).
[CrossRef]

F. Gervais and B. Piriou, "Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile)," Phys. Rev. B 10, 1642-1654 (1974).
[CrossRef]

Phys. Rev. Lett. (3)

L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Physica B (1)

D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).

Science (4)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004).
[CrossRef] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

A. Grbic, L. Jiang, and R. Merlin, "Near-field plates: subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).
[CrossRef] [PubMed]

Other (3)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).

E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985)

K. Lee, H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Opt. Express 16, 1711-1718 (2008), http://www.opticsinfobase.org/ abstract.cfm?URI=OE-16-3-1711.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The schematic geometry of the imaging system used in this work.

Fig. 2.
Fig. 2.

The MTF and PTF of the Ag slab NFSL imaging system are plotted versus kx /k 0 when (a) virtually ε L = 0.001 and (b) realistically ε L = 0.4. These data are cited from Fig. 2 of Ref. [13]

Fig. 3.
Fig. 3.

In the plane of wavelength (λ) and kx /k 0, (a) the MTF and (b) PTF are plotted and the white dashed lines represent the index-matched wavelength. As a function of kx /k 0, (c) the MTF and (d) PTF are depicted for the index matched case (14.3µm), the phase-retrieved case (12.9µm), blue limit (λ=12.1µm), and red limit (λ=13.6µm). The visibilities (V) of lateral intensity distribution in the image plane through a double slit with given slit width and p-p separation (e) for the index matched case (14.3µm), (f) the phase-retrieved case (12.9µm), (g) blue limit (λ=12.1µm), and (h) red limit (λ=13.6µm).

Fig. 4.
Fig. 4.

(a) The visibility versus p-p separation when slit width is 0.3µm, (b) the resolvable separation (or p-p separation) between two slits with a 0.3µm slit width, and the lateral intensity distributions through a double slit with p-p separation of (c) 1.7µm and (d) 3.8µm, as well as 0.3µm slit width.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

OTF ( k x ) 4 e 2 k x d ( ε L ε 1 i ω 2 ε 1 k x 2 c 2 ) 2 + 4 e 2 k x d ,
OTF ( k x ) = MTF ( k x ) exp [ i PTF ( k x ) ]
MTF ( k x ) 4 e 2 k x d [ ( ε L ε 1 ) 2 ( ε 1 ω 2 k x 2 c 2 ) 2 + 4 e 2 k x d ] 2 + ( 2 ε L ω 2 k x 2 c 2 ) 2
PTF ( k x ) tan 1 [ 2 ε L ω 2 k x 2 c 2 ( ε L ε 1 ) 2 ( ω 2 ε 1 k x 2 c 2 ) 2 + 4 e 2 k x d ]
MTF ( k x , r ) at resonance 2 k x , r 2 c 2 e 2 k x , r d ε L ω 2 .

Metrics