Abstract

Cloaking can prevent a scattering object from detection by electromagnetic waves as it can significantly reduce the scattering cross section of the object. In this work we show that when two cloaks are placed in close neighborhood, the interaction will greatly enhance the perturbation of near field and significantly increase the scattering cross section compared with a single cloak. This means that the cloaking functionality may strongly degrade when two or more cloaks come close to each other. This offers a route to break down electromagnetic cloaking.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
    [CrossRef] [PubMed]
  4. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
    [CrossRef] [PubMed]
  5. Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131118 (2008).
    [CrossRef]
  6. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
    [CrossRef] [PubMed]
  7. H. S. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
    [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  9. B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
    [CrossRef]
  10. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [CrossRef]
  11. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [CrossRef] [PubMed]
  12. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  13. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  14. H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B 78(5), 054204 (2008).
    [CrossRef]
  15. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [CrossRef] [PubMed]
  16. A. Alù and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15(12), 7578–7590 (2007).
    [CrossRef] [PubMed]
  17. T. C. Han, X. H. Tang, and F. Xiao, “The petal-shaped cloak,” J. Electromagn. Waves Appl. 23(14), 2055–2062 (2009).
    [CrossRef]
  18. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14(25), 12457–12466 (2006).
    [CrossRef] [PubMed]
  19. B. Zhang and B.-I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett. 103(24), 243901 (2009).
    [CrossRef]

2009 (6)

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

T. C. Han, X. H. Tang, and F. Xiao, “The petal-shaped cloak,” J. Electromagn. Waves Appl. 23(14), 2055–2062 (2009).
[CrossRef]

B. Zhang and B.-I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett. 103(24), 243901 (2009).
[CrossRef]

2008 (3)

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B 78(5), 054204 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131118 (2008).
[CrossRef]

2007 (5)

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

H. S. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[CrossRef] [PubMed]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Cloaking and transparency for collections of particles with metamaterial and plasmonic covers,” Opt. Express 15(12), 7578–7590 (2007).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

2006 (5)

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14(25), 12457–12466 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Alù, A.

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Chan, C. T.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B 78(5), 054204 (2008).
[CrossRef]

Chen, H.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B 78(5), 054204 (2008).
[CrossRef]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

Chen, H. S.

H. S. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[CrossRef] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Engheta, N.

Guenneau, S.

Han, T. C.

T. C. Han, X. H. Tang, and F. Xiao, “The petal-shaped cloak,” J. Electromagn. Waves Appl. 23(14), 2055–2062 (2009).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, X.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131118 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kong, J. A.

H. S. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

Lai, Y.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Liang, Z.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131118 (2008).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Luo, Y.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

Miller, D. A. B.

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Neff, C. W.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

Nicolet, A.

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Qiu, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

Ran, L.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sun, X.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131118 (2008).
[CrossRef]

Tang, X. H.

T. C. Han, X. H. Tang, and F. Xiao, “The petal-shaped cloak,” J. Electromagn. Waves Appl. 23(14), 2055–2062 (2009).
[CrossRef]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Wu, B.-I.

B. Zhang and B.-I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett. 103(24), 243901 (2009).
[CrossRef]

H. S. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

Xiao, F.

T. C. Han, X. H. Tang, and F. Xiao, “The petal-shaped cloak,” J. Electromagn. Waves Appl. 23(14), 2055–2062 (2009).
[CrossRef]

Yan, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

Yao, P.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131118 (2008).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang and B.-I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett. 103(24), 243901 (2009).
[CrossRef]

H. S. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, Z. Q.

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Zolla, F.

Appl. Phys. Lett. (1)

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92(13), 131118 (2008).
[CrossRef]

J. Electromagn. Waves Appl. (1)

T. C. Han, X. H. Tang, and F. Xiao, “The petal-shaped cloak,” J. Electromagn. Waves Appl. 23(14), 2055–2062 (2009).
[CrossRef]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

H. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B 78(5), 054204 (2008).
[CrossRef]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76(12), 121101 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99(11), 113903 (2007).
[CrossRef] [PubMed]

H. S. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

B. Zhang and B.-I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett. 103(24), 243901 (2009).
[CrossRef]

Science (5)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of our simulation of a non-ideal cylinder cloak. (b) The far field scattering patterns of a conducting cylinder with and without a cloak. All values have been normalized to the scattering pattern of the bare conducting cylinder at θ = 0 . (c) The total electric field distribution of the cloak. (d) The scattering field distribution outside the cloak. Here we make the field zero inside the cloak.

Fig. 2
Fig. 2

(a) Schematic view of our simulation about two cloaks arranged in a row. (b) The far field patterns of the scattering field at different intervals. The black line represents the far field pattern for one cloak. All values have been normalized to the scattering pattern of the bare conducting cylinder at θ = 0 .(c) The total electric field distribution and (e) the scattering field distribution outside the two cloaks at an interval of 0.20 m. (d) The total electric field distribution and (f) the scattering field distribution outside the two cloaks at an interval of 0.01 m.

Fig. 3
Fig. 3

(a) Schematic view of the simulation about two cloaks arranged in a column with respect to the incident wave direction. (b) The far field patterns of the scattering field at different intervals. All values have been normalized to the scattering pattern of the bare conducting cylinder at θ = 0 . (c) The total electric field distribution and (e) the scattering field distribution outside the two cloaks at an interval of 0.20 m. (d) The total electric field distribution and (f) the scattering field distribution outside the two cloaks at an interval of 0.01 m.

Fig. 4
Fig. 4

(a) The maximum peak in SCS for two cloaks as a function of the interval between two cloaks. All values are normalized to the maximum peak in SCS for one cloak. (b) The total SCS for two cloaks. All values have been normalized to the total SCS of one cloak. The red dotted line correspond to Case 1 where the two cloaks are arranged in a row, while the black dotted line represent Case 2 where the two cloaks are arranged in a column.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε z = ( R 2 R 2 R 1 ) 2 ,      μ ϕ = 1 ,      μ r = ( r R 1 r ) 2

Metrics