Abstract

The possibility of antireflection (AR) coatings on a dielectric multilayer having sub-wavelength deep structural modification is investigated. We numerically surveyed the effect of reflectivity reduction attained by double-layer AR coatings for a wavy multilayer on a patterned substrate. It was clarified that double-layer AR coatings for wavy multilayer is possible with a similar performance level as conventional flat multilayer. Also, it was demonstrated that a pair of AR layers effectively works for a wide range of the horizontal pitch.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14(7), 1627–1636 (1997).
    [CrossRef]
  2. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [CrossRef] [PubMed]
  3. N. Destouches, J.-C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14(26), 12613–12622 (2006).
    [CrossRef] [PubMed]
  4. R. C. Rumpf, A. Mehta, P. Srinivasan, and E. G. Johnson, “Design and optimization of space-variant photonic crystal filters,” Appl. Opt. 46(23), 5755–5761 (2007).
    [CrossRef] [PubMed]
  5. M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77(26), 4256–4258 (2000).
    [CrossRef]
  6. T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).
  7. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
    [CrossRef]
  8. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
    [CrossRef]
  9. Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25(2), 499–503 (2007).
    [CrossRef]
  10. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
    [CrossRef] [PubMed]
  11. A. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Johnson, “Spatially polarizing autocloned elements,” Opt. Lett. 32(13), 1935–1937 (2007).
    [CrossRef] [PubMed]
  12. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
    [CrossRef]
  13. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26(6), 1142–1146 (1987).
    [CrossRef] [PubMed]
  14. J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antirefection coating for semi-in nite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82(1), 7–9 (2003).
    [CrossRef]
  15. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).
  16. http://www.photonic-lattice.com/en/Products_List.html
  17. H. A. Macleod, in Thin-Film Optical Filters, 3rd ed. (IoP Publishing, 2001), Chap. 6.
  18. C. Ufford and P. Baumeister, “Graphical aids in the use of equivalent index in multilayer-filter design,” J. Opt. Soc. Am. 64(3), 329–334 (1974).
    [CrossRef]
  19. Y. Ohtera, “Calculating the complex photonic band structure by the finite-difference time-domain based method,” Jpn. J. Appl. Phys. 47(6), 4827–4834 (2008).
    [CrossRef]
  20. Y. Ohtera and T. Kawashima, “Extremely low optical transmittance in the stopbands of photonic crystals,” Photonics Nanostruct. Fundam. Appl. 7(2), 85–91 (2009).
    [CrossRef]
  21. For example, P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).
    [CrossRef]
  22. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54(16), 11245–11251 (1996).
    [CrossRef]
  23. L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42(11), 806–810 (1952).
    [CrossRef]
  24. L. Fabre, Y. Inoue, T. Aoki, and S. Kawakami, “Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction,” Appl. Opt. 48(7), 1347–1357 (2009).
    [CrossRef] [PubMed]

2009 (2)

Y. Ohtera and T. Kawashima, “Extremely low optical transmittance in the stopbands of photonic crystals,” Photonics Nanostruct. Fundam. Appl. 7(2), 85–91 (2009).
[CrossRef]

L. Fabre, Y. Inoue, T. Aoki, and S. Kawakami, “Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction,” Appl. Opt. 48(7), 1347–1357 (2009).
[CrossRef] [PubMed]

2008 (2)

Y. Ohtera, “Calculating the complex photonic band structure by the finite-difference time-domain based method,” Jpn. J. Appl. Phys. 47(6), 4827–4834 (2008).
[CrossRef]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

2007 (5)

2006 (1)

2004 (1)

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

2003 (1)

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antirefection coating for semi-in nite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82(1), 7–9 (2003).
[CrossRef]

2002 (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

2000 (1)

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77(26), 4256–4258 (2000).
[CrossRef]

1999 (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
[CrossRef]

1997 (1)

1996 (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54(16), 11245–11251 (1996).
[CrossRef]

1987 (1)

1977 (1)

1974 (1)

1952 (1)

Ahmed, M. A.

Aoki, T.

Aoyama, T.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

Araki, T.

Baba, A.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

Baumeister, P.

Brown, J. D.

Cheng, C.-C.

Chou, H.-P.

Clausnitzer, T.

Destouches, N.

Epstein, L. I.

Fabre, L.

Fainman, Y.

Fan, S.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54(16), 11245–11251 (1996).
[CrossRef]

Graf, T.

Hashimoto, N.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

Hong, C.-S.

Inoue, Y.

Ishikawa, W.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

Ishino, N.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54(16), 11245–11251 (1996).
[CrossRef]

Johnson, E. G.

Kawakami, S.

L. Fabre, Y. Inoue, T. Aoki, and S. Kawakami, “Differential interference contrast microscope using photonic crystals for phase imaging and three-dimensional shape reconstruction,” Appl. Opt. 48(7), 1347–1357 (2009).
[CrossRef] [PubMed]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25(2), 499–503 (2007).
[CrossRef]

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
[CrossRef] [PubMed]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77(26), 4256–4258 (2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
[CrossRef]

Kawashima, T.

Y. Ohtera and T. Kawashima, “Extremely low optical transmittance in the stopbands of photonic crystals,” Photonics Nanostruct. Fundam. Appl. 7(2), 85–91 (2009).
[CrossRef]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77(26), 4256–4258 (2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
[CrossRef]

Kimura, Y.

Kozawa, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Lyndin, N.

Mehta, A.

Miura, K.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Nishida, N.

Notomi, M.

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77(26), 4256–4258 (2000).
[CrossRef]

Ohkubo, H.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

Ohta, Y.

Ohtera, Y.

Y. Ohtera and T. Kawashima, “Extremely low optical transmittance in the stopbands of photonic crystals,” Photonics Nanostruct. Fundam. Appl. 7(2), 85–91 (2009).
[CrossRef]

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Y. Ohtera, “Calculating the complex photonic band structure by the finite-difference time-domain based method,” Jpn. J. Appl. Phys. 47(6), 4827–4834 (2008).
[CrossRef]

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25(2), 499–503 (2007).
[CrossRef]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
[CrossRef]

Ono, Y.

Onuki, T.

Parriaux, O.

Pommier, J.-C.

Rumpf, R. C.

Salvekar, A. A.

Sasaki, Y.

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
[CrossRef] [PubMed]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

Sato, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Sato, T.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
[CrossRef] [PubMed]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
[CrossRef]

Scherer, A.

Shirane, M.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antirefection coating for semi-in nite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82(1), 7–9 (2003).
[CrossRef]

Srinivasan, P.

Sun, P.-C.

Tadokoro, T.

Tamamura, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77(26), 4256–4258 (2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
[CrossRef]

Tokushima, M.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antirefection coating for semi-in nite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82(1), 7–9 (2003).
[CrossRef]

Tonchev, S.

Tsuru, T.

Tyan, R.-C.

Ufford, C.

Ushida, J.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antirefection coating for semi-in nite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82(1), 7–9 (2003).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54(16), 11245–11251 (1996).
[CrossRef]

Vogel, M. M.

Voss, A.

Xu, F.

Yamada, H.

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antirefection coating for semi-in nite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82(1), 7–9 (2003).
[CrossRef]

Yariv, A.

Yeh, P.

Appl. Opt. (4)

Appl. Phys. Express (1)

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77(26), 4256–4258 (2000).
[CrossRef]

J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, “Systematic design of antirefection coating for semi-in nite one-dimensional photonic crystals using Bloch wave expansion,” Appl. Phys. Lett. 82(1), 7–9 (2003).
[CrossRef]

E (1)

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, ““Development of autocloned photonic crystal devices”, IEICE Trans. Electron,” E 87-C, 283–290 (2004).

Electron. Lett. (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 35(15), 1271–1272 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Ohtera, “Calculating the complex photonic band structure by the finite-difference time-domain based method,” Jpn. J. Appl. Phys. 47(6), 4827–4834 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34(1/3), 63–70 (2002).
[CrossRef]

Photonics Nanostruct. Fundam. Appl. (1)

Y. Ohtera and T. Kawashima, “Extremely low optical transmittance in the stopbands of photonic crystals,” Photonics Nanostruct. Fundam. Appl. 7(2), 85–91 (2009).
[CrossRef]

Phys. Rev. B (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54(16), 11245–11251 (1996).
[CrossRef]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).

http://www.photonic-lattice.com/en/Products_List.html

H. A. Macleod, in Thin-Film Optical Filters, 3rd ed. (IoP Publishing, 2001), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the multilayer. (a) flat multilayer, (b) modulated multilayer with triangular wavy modification (two-dimensional photonic crystal).

Fig. 2
Fig. 2

Multilayer profiles for the calculation of reflectivity. (a) LHL-type, (b) HLH-type. Λ and a are the horizontal and vertical lattice constants of the PhC. k denotes the wavevector.

Fig. 3
Fig. 3

Complex dispersion relation of even symmetric TE modes in a wavy multilayer PhC. Solid lines in black and red correspond to the propagation constant of propagating modes and the decay constant of evanescent modes, respectively. Doubled lines seen around a/λ~0.35 indicates the propagation and decay constants of the complex modes. “A” and “B” represent the target frequency regions for AR.

Fig. 4
Fig. 4

Reflection spectra of uncoated multilayers. (a) air-(L/2-H-L/2)15-subst., (b) air-(H/2-L-H/2)15-subst. Top, middle, bottom plots correspond to flat, PhC (TE mode), PhC (TM mode), respectively. Arrows indicate the bands having large index mismatch with ambient materials. PB and SB mean passband and stopband, respectively. “A” and “B” are the target wavelength range for AR, and correspond to what shown in Fig. 3.

Fig. 5
Fig. 5

Reflectivity map of a surface side AR coatings on the LHL-type flat multilayer. (a) H layer top, flat structure. air-H’-L’-(main multilayer)-subst., (b) H layer top, TE mode of PhC, (c) L layer top, flat structure. air-L’-H’-(main multilayer)-subst., (d) L layer top, TE mode of PhC.

Fig. 6
Fig. 6

Reflectivity map of a surface side AR coatings on the HLH-type flat multilayer. (a) H layer top, flat structure. air-H’-L’-(main multilayer)-subst., (b) H layer top, TE mode of PhC, (c) L layer top, flat structure. air-L’-H’-(main multilayer)-subst., (d) L layer top, TE mode of PhC.

Fig. 7
Fig. 7

Reflectivity map of a substrate side AR coatings. (a) for the LHL-type flat multilayer, (b) for TE modes of LHL-type PhC, (c) for HLH-type flat multilayer, (d) for TE modes of HLH-type PhC.

Fig. 8
Fig. 8

Summary of the reflection spectra with and without AR coatings. (a) Second passband of HLH-type. “B” corresponds to the target region marked in Fig. 3. (b) First passband of LHL- multilayers. Dotted and solid lines denote uncoated and coated structures, respectively. “A” corresponds to another target region and is also indicated in Fig. 3. The upper and lower plots correspond to the result for flat and PhC (TE mode) multilayers.

Fig. 9
Fig. 9

Calculated reflection spectra of PhC (TE wave) with and without double-layer AR coatings. Top, middle, and bottom plots correspond to the horizontal lattice constant of: Λ = 0.7a, 0.9a, and 1.1a, respectively. Film profiles are common for all three cases. (a) HLH-type PhC. air-0.6L-0.21H-(PhC)-0.05L-0.37H-subst. (b) LHL-type PhC. air-2.15L-1.26H-(PhC)-0.42L-0.55H-subst. The regions “A” and “B” correspond to those in Fig. 3.

Fig. 10
Fig. 10

Average reflectivity calculated as a function of horizontal lattice constant of PhC. Slope angle of the wavy interface is kept constant as 40 degree. TE mode. (a) HLH-type, shorter half of the second passband, (b) LHL-type, first passband. Dotted lines indicate the lower and upper boundary of the wavelength where average reflectivity is evaluated. Configuration for the surface side and substrate side AR are the same as Fig. 9.

Fig. 11
Fig. 11

Average reflectivity calculated as a function of the local slope angle of the wavy multilayer PhC. Horizontal pitch (L) is kept constant as Λ = 0.9a. TE mode. (a) HLH-type, shorter half of the second passband, (b) LHL-type, first passband. Configuration for the surface side and substrate side AR are the same as Fig. 9.

Metrics