Abstract

A single <110> cadmium-manganese-telluride crystal that exhibits both the Pockels and Faraday effects is used to produce a Poynting-vector sensor for signals in the microwave regime. This multi-birefringent crystal can independently measure either electric or magnetic fields through control of the polarization of the optical probe beam. After obtaining all the relevant electric and magnetic field components, a map of the Poynting vector along a 50-Ω microstrip was experimentally determined without the need for any further transformational calculations. The results demonstrate that this sensor can be used for near-field mapping of the Poynting vector. Utilizing both amplitude and phase information from the fields in the microwave signal, it was confirmed for the case of an open-terminated microstrip that no energy flowed to the load, while for a microstrip with a matched termination, the energy flowed consistently along the transmission line.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
    [CrossRef] [PubMed]
  2. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17(5), 3826–3834 (2009).
    [CrossRef] [PubMed]
  3. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
    [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  5. R. S. Schechter and S. T. Chun, “Large finite-difference time domain simulations of a left-handed metamaterial lens with wires and resonators,” Appl. Phys. Lett. 91(15), 154102 (2007).
    [CrossRef]
  6. M. Sigalov, E. O. Kamenetskii, and R. Shavit, “Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk,” Phys. Lett. A 372, 91–97 (2008).
  7. C.-L. Zou, Y. Yang, Y.-F. Xiao, C.-H. Dong, Z.-F. Han, and G.-C. Guo, “Accurately calculating high quality factor of whispering-gallery modes with boundary element method,” J. Opt. Soc. Am. B 26(11), 2050–2053 (2009).
    [CrossRef]
  8. S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008).
    [CrossRef]
  9. F. Sumiyoshi, A. Kawagoe, M. Tokuda, and S. Kaminohara, “A Quench Monitoring System of Superconducting Coils by Using the Poynting Vector Method,” IEEE. Trans. Appl. Supercon. 19(3), 2341–2344 (2009).
    [CrossRef]
  10. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15(19), 11781–11789 (2007).
    [CrossRef] [PubMed]
  11. H. Hirayama, H. Kondo, N. Kikuma, and K. Sakakibara, “Visualization of emission from bend of a transmission line with Poynting vector and wave-number vector,” in Electromagnetic Compatibility - EMC Europe, 2008 International Symposium on(2008), pp. 1–4.
  12. E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
    [CrossRef]
  13. K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004).
    [CrossRef]
  14. B. Krichevtsov, “Anisotropy of the linear and quadratic magnetic birefringence in rare-earth semiconductors (γ-Ln2S3 (Ln=Dy3+, Pr3+, Gd3+, La3+),” J. Exp. Theor. Phys. 92(5), 830–839 (2001).
    [CrossRef]
  15. C.-C. Chen and J. F. Whitaker, “Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal,” Appl. Phys. Lett. 92(10), 101119–101113 (2008).
    [CrossRef]
  16. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
    [CrossRef]
  17. J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997).
    [CrossRef]
  18. Q. Zhan, “Magnetic field distribution of a highly focused radially-polarized light beam: comment,” Opt. Express 18(2), 765–766 (2010).
    [CrossRef] [PubMed]
  19. K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
    [CrossRef]
  20. R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001).
    [CrossRef]

2010

2009

2008

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

M. Sigalov, E. O. Kamenetskii, and R. Shavit, “Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk,” Phys. Lett. A 372, 91–97 (2008).

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008).
[CrossRef]

C.-C. Chen and J. F. Whitaker, “Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal,” Appl. Phys. Lett. 92(10), 101119–101113 (2008).
[CrossRef]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008).
[CrossRef] [PubMed]

2007

2006

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2004

K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004).
[CrossRef]

2003

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

2001

B. Krichevtsov, “Anisotropy of the linear and quadratic magnetic birefringence in rare-earth semiconductors (γ-Ln2S3 (Ln=Dy3+, Pr3+, Gd3+, La3+),” J. Exp. Theor. Phys. 92(5), 830–839 (2001).
[CrossRef]

R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001).
[CrossRef]

1998

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
[CrossRef]

1997

J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997).
[CrossRef]

1996

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

Adam, A. J. L.

Amet, J.

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008).
[CrossRef]

Ando, K.

K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004).
[CrossRef]

Arai, K. I.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

Arakawa, S.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

Baida, F. I.

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008).
[CrossRef]

Bernal, M.-P.

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008).
[CrossRef]

Bitzer, A.

Chen, C.-C.

C.-C. Chen and J. F. Whitaker, “Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal,” Appl. Phys. Lett. 92(10), 101119–101113 (2008).
[CrossRef]

Chun, S. T.

R. S. Schechter and S. T. Chun, “Large finite-difference time domain simulations of a left-handed metamaterial lens with wires and resonators,” Appl. Phys. Lett. 91(15), 154102 (2007).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

David, G.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
[CrossRef]

Debnath, M. C.

K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004).
[CrossRef]

Diziain, S.

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008).
[CrossRef]

Dong, C.-H.

Dorfmüller, J.

Etrich, C.

Fang, N.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

Feurer, T.

Giessen, H.

Guo, G.-C.

Han, Z.-F.

Helm, H.

Jeoung, S. C.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kamenetskii, E. O.

M. Sigalov, E. O. Kamenetskii, and R. Shavit, “Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk,” Phys. Lett. A 372, 91–97 (2008).

Kaminohara, S.

F. Sumiyoshi, A. Kawagoe, M. Tokuda, and S. Kaminohara, “A Quench Monitoring System of Superconducting Coils by Using the Poynting Vector Method,” IEEE. Trans. Appl. Supercon. 19(3), 2341–2344 (2009).
[CrossRef]

Kang, J. H.

Katehi, L. P. B.

R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001).
[CrossRef]

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
[CrossRef]

Kawagoe, A.

F. Sumiyoshi, A. Kawagoe, M. Tokuda, and S. Kaminohara, “A Quench Monitoring System of Superconducting Coils by Using the Poynting Vector Method,” IEEE. Trans. Appl. Supercon. 19(3), 2341–2344 (2009).
[CrossRef]

Kern, K.

Kim, D. S.

Krichevtsov, B.

B. Krichevtsov, “Anisotropy of the linear and quadratic magnetic birefringence in rare-earth semiconductors (γ-Ln2S3 (Ln=Dy3+, Pr3+, Gd3+, La3+),” J. Exp. Theor. Phys. 92(5), 830–839 (2001).
[CrossRef]

Kyoung, Y.

R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001).
[CrossRef]

Lederer, F.

Lee, J. W.

Litz, M.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

Lu, Z. G.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997).
[CrossRef]

Merbold, H.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Ota, H.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

Park, Q. H.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Pertsch, T.

Planken, P. C. M.

Reano, R. M.

R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001).
[CrossRef]

Riordan, J. A.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997).
[CrossRef]

Robertson, S. V.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
[CrossRef]

Rockstuhl, C.

Saito, H.

K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004).
[CrossRef]

Sato, R.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

Schechter, R. S.

R. S. Schechter and S. T. Chun, “Large finite-difference time domain simulations of a left-handed metamaterial lens with wires and resonators,” Appl. Phys. Lett. 91(15), 154102 (2007).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Seo, M. A.

Shavit, R.

M. Sigalov, E. O. Kamenetskii, and R. Shavit, “Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk,” Phys. Lett. A 372, 91–97 (2008).

Sigalov, M.

M. Sigalov, E. O. Kamenetskii, and R. Shavit, “Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk,” Phys. Lett. A 372, 91–97 (2008).

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sumiyoshi, F.

F. Sumiyoshi, A. Kawagoe, M. Tokuda, and S. Kaminohara, “A Quench Monitoring System of Superconducting Coils by Using the Poynting Vector Method,” IEEE. Trans. Appl. Supercon. 19(3), 2341–2344 (2009).
[CrossRef]

Sun, F. G.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997).
[CrossRef]

Suzuki, E.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

Takahashi, M.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

Thoman, A.

Tokuda, M.

F. Sumiyoshi, A. Kawagoe, M. Tokuda, and S. Kaminohara, “A Quench Monitoring System of Superconducting Coils by Using the Poynting Vector Method,” IEEE. Trans. Appl. Supercon. 19(3), 2341–2344 (2009).
[CrossRef]

Vogelgesang, R.

Walther, M.

Whitaker, J. F.

C.-C. Chen and J. F. Whitaker, “Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal,” Appl. Phys. Lett. 92(10), 101119–101113 (2008).
[CrossRef]

R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001).
[CrossRef]

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
[CrossRef]

Wu, Q.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

Xiao, Y.-F.

Yang, K.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
[CrossRef]

Yang, Y.

Zayets, V.

K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004).
[CrossRef]

Zentgraf, T.

Zhan, Q.

Zhang, X.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

Zhang, X.-C.

J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

Zou, C.-L.

Appl. Phys. Lett.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
[CrossRef]

R. S. Schechter and S. T. Chun, “Large finite-difference time domain simulations of a left-handed metamaterial lens with wires and resonators,” Appl. Phys. Lett. 91(15), 154102 (2007).
[CrossRef]

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008).
[CrossRef]

C.-C. Chen and J. F. Whitaker, “Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal,” Appl. Phys. Lett. 92(10), 101119–101113 (2008).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996).
[CrossRef]

J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997).
[CrossRef]

IEEE Trans. Instrum. Measurement,

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Techn.

K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998).
[CrossRef]

R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001).
[CrossRef]

IEEE. Trans. Appl. Supercon.

F. Sumiyoshi, A. Kawagoe, M. Tokuda, and S. Kaminohara, “A Quench Monitoring System of Superconducting Coils by Using the Poynting Vector Method,” IEEE. Trans. Appl. Supercon. 19(3), 2341–2344 (2009).
[CrossRef]

J. Exp. Theor. Phys.

B. Krichevtsov, “Anisotropy of the linear and quadratic magnetic birefringence in rare-earth semiconductors (γ-Ln2S3 (Ln=Dy3+, Pr3+, Gd3+, La3+),” J. Exp. Theor. Phys. 92(5), 830–839 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

M. Sigalov, E. O. Kamenetskii, and R. Shavit, “Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk,” Phys. Lett. A 372, 91–97 (2008).

Science

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other

H. Hirayama, H. Kondo, N. Kikuma, and K. Sakakibara, “Visualization of emission from bend of a transmission line with Poynting vector and wave-number vector,” in Electromagnetic Compatibility - EMC Europe, 2008 International Symposium on(2008), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental configuration for the Poynting-vector measurement using a CMT sensor coated with a high reflection dielectric stack.

Fig. 2
Fig. 2

Experimental Setup for measuring (a) Ez or Hy field component and (b) Ey or Hz field components of a 50-Ω microstrip transmission line by using the same CMT crystal.

Fig. 3
Fig. 3

Experimental results of Ez amplitude in (a) open termination and (b) matched-load termination; Ez phase in (c) open termination and (d) matched-load termination

Fig. 4
Fig. 4

Experimental results of Hy amplitude in (a) open termination and (b) matched-load termination; Hy phase in (c) open termination and (d) matched-load termination

Fig. 5
Fig. 5

Experimental results of partial Poynting vector amplitude of the x-component in (a) open termination and (b) matched-load termination; partial Poynting vector phase of x-component in (c) open termination and (d) matched-load termination

Fig. 6
Fig. 6

Poynting Vector amplitude of the x-component (a) open termination and (b) matched-load termination

Fig. 7
Fig. 7

Experimental data showing the amplitude and phase variation of the Poynting vector of the x-component versus probe position along the center of the microstrip terminated with (a) an open circuit and (b) a matched load.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S = 1 2 E × H
S x = 1 2 ( E y H z E z H y )
E crystal = E air n

Metrics