Abstract

The characterization of partially coherent light transmission by micrometer sized valves of marine diatoms is an interesting optical challenge and, from the biological point of view, is of outmost relevance in order to understand evolution mechanisms of such organisms. In the present work, we have studied the transmission of light coming from a monochromator through single valves of Coscinodiscus wailesii diatoms. Incoming light is confined by the regular pore pattern of the diatom surface into a spot of few microns, its dimensions depending on wavelength. The effect is ascribed to the superposition of wavefronts diffracted by the pores’ edges. Numerical simulations help to demonstrate how this effect is not present in the ultraviolet region of the light spectrum, showing one of the possible evolutionary advantages represented by the regular pores patterns of the valves.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
    [CrossRef] [PubMed]
  2. A. R. Parker and H. E. Townley, "Biomimetics of photonic nanostructures," Nature Nanotech. 2, 347-353 (2007).
    [CrossRef]
  3. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266, 1403-1411 (1999).
    [CrossRef]
  4. E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, and W. W. C. Gieskes, "Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study," J. Phycol. 36, 146-159 (2000).
    [CrossRef]
  5. S. A. Crawford, M. J. Higgins, P. Mulvaney, and R. Wetherbee, "Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy," J. Phycol. 37, 543-554 (2001).
    [CrossRef]
  6. M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in cocconeidacean monoraphid Taxa," J. Nanosc. Nanotech. 5, 1-10 (2005).
  7. T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
    [CrossRef]
  8. L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
    [CrossRef]
  9. S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
    [CrossRef]
  10. L. De Stefano, A. Lamberti, L. Rotiroti, and M. De Stefano, "Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter," Acta Biomat. 4, 126-130 (2008).
    [CrossRef]
  11. D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
    [CrossRef]
  12. L. De Stefano, I. Rea, I. Rendina,M. De Stefano, and L. Moretti, "Lensless light focusing with the centric marine diatom Coscinodiscus wailesii," Opt. Express 15, 18082 (2007).
    [CrossRef] [PubMed]
  13. J. Noyes, M. Sumper, and P. Vukusic, "Light manipulation in a marine diatom," J. Mater. Res. 23, 3229-3235 (2008).
    [CrossRef]
  14. S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
    [CrossRef]
  15. A. M. Schmid, "Intraclonal variation in the valve structure of Coscinodiscus wailesii Gran et Angst," Beih. Nova Hedw. 100, 101-119 (1990).
  16. M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed., (Pergamon Press, Oxford, 1993).
  17. G. R. Hadley, "Wide-angle beam propagation using Pad’e approximant operators," Opt. Lett. 17, 1426-1428 (1992).
    [CrossRef] [PubMed]
  18. E. D. Palik, Handbook of optical constants of solids, (Academic Press, 1998).
  19. G. S. Agarwal, G. Gbur, E. Wolf, "Coherence properties of sunlight," Opt. Lett. 29, 459-461 (2004).
    [CrossRef] [PubMed]
  20. J. Y. Lee, C.W. Lee, E. H. Lin, and P. K. Wei, "Single live cell refractometer using nanoparticle coated fiber tip," App. Phys. Lett. 93, 173110 (2008).
    [CrossRef]

2009 (1)

D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
[CrossRef]

2008 (5)

S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
[CrossRef]

L. De Stefano, A. Lamberti, L. Rotiroti, and M. De Stefano, "Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter," Acta Biomat. 4, 126-130 (2008).
[CrossRef]

J. Noyes, M. Sumper, and P. Vukusic, "Light manipulation in a marine diatom," J. Mater. Res. 23, 3229-3235 (2008).
[CrossRef]

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

J. Y. Lee, C.W. Lee, E. H. Lin, and P. K. Wei, "Single live cell refractometer using nanoparticle coated fiber tip," App. Phys. Lett. 93, 173110 (2008).
[CrossRef]

2007 (2)

2005 (2)

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in cocconeidacean monoraphid Taxa," J. Nanosc. Nanotech. 5, 1-10 (2005).

L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
[CrossRef]

2004 (2)

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

G. S. Agarwal, G. Gbur, E. Wolf, "Coherence properties of sunlight," Opt. Lett. 29, 459-461 (2004).
[CrossRef] [PubMed]

2003 (1)

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

2001 (1)

S. A. Crawford, M. J. Higgins, P. Mulvaney, and R. Wetherbee, "Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy," J. Phycol. 37, 543-554 (2001).
[CrossRef]

2000 (1)

E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, and W. W. C. Gieskes, "Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study," J. Phycol. 36, 146-159 (2000).
[CrossRef]

1999 (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266, 1403-1411 (1999).
[CrossRef]

1992 (1)

1990 (1)

A. M. Schmid, "Intraclonal variation in the valve structure of Coscinodiscus wailesii Gran et Angst," Beih. Nova Hedw. 100, 101-119 (1990).

Agarwal, G. S.

Beelen, T. P. M.

E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, and W. W. C. Gieskes, "Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study," J. Phycol. 36, 146-159 (2000).
[CrossRef]

Bismuto, A.

L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
[CrossRef]

Chang, C.H.

D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
[CrossRef]

Crawford, S. A.

S. A. Crawford, M. J. Higgins, P. Mulvaney, and R. Wetherbee, "Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy," J. Phycol. 37, 543-554 (2001).
[CrossRef]

De Stefano, L.

S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
[CrossRef]

L. De Stefano, A. Lamberti, L. Rotiroti, and M. De Stefano, "Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter," Acta Biomat. 4, 126-130 (2008).
[CrossRef]

L. De Stefano, I. Rea, I. Rendina,M. De Stefano, and L. Moretti, "Lensless light focusing with the centric marine diatom Coscinodiscus wailesii," Opt. Express 15, 18082 (2007).
[CrossRef] [PubMed]

L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
[CrossRef]

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in cocconeidacean monoraphid Taxa," J. Nanosc. Nanotech. 5, 1-10 (2005).

De Stefano, M.

S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
[CrossRef]

L. De Stefano, A. Lamberti, L. Rotiroti, and M. De Stefano, "Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter," Acta Biomat. 4, 126-130 (2008).
[CrossRef]

L. De Stefano, I. Rea, I. Rendina,M. De Stefano, and L. Moretti, "Lensless light focusing with the centric marine diatom Coscinodiscus wailesii," Opt. Express 15, 18082 (2007).
[CrossRef] [PubMed]

L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
[CrossRef]

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in cocconeidacean monoraphid Taxa," J. Nanosc. Nanotech. 5, 1-10 (2005).

El Rharbi-Kucki, M.

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Fuhrmann, T.

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Gale, D. K.

D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
[CrossRef]

Gbur, G.

Gieskes, W. W. C.

E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, and W. W. C. Gieskes, "Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study," J. Phycol. 36, 146-159 (2000).
[CrossRef]

Gutu, T.

D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
[CrossRef]

Hadley, G. R.

Hayashida, N.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

Higgins, M. J.

S. A. Crawford, M. J. Higgins, P. Mulvaney, and R. Wetherbee, "Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy," J. Phycol. 37, 543-554 (2001).
[CrossRef]

Jiao, J.

D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
[CrossRef]

Lamberti, A.

L. De Stefano, A. Lamberti, L. Rotiroti, and M. De Stefano, "Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter," Acta Biomat. 4, 126-130 (2008).
[CrossRef]

Landwehr, S.

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266, 1403-1411 (1999).
[CrossRef]

Lee, C.W.

J. Y. Lee, C.W. Lee, E. H. Lin, and P. K. Wei, "Single live cell refractometer using nanoparticle coated fiber tip," App. Phys. Lett. 93, 173110 (2008).
[CrossRef]

Lee, J. Y.

J. Y. Lee, C.W. Lee, E. H. Lin, and P. K. Wei, "Single live cell refractometer using nanoparticle coated fiber tip," App. Phys. Lett. 93, 173110 (2008).
[CrossRef]

Lettieri, S.

S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
[CrossRef]

Lin, E. H.

J. Y. Lee, C.W. Lee, E. H. Lin, and P. K. Wei, "Single live cell refractometer using nanoparticle coated fiber tip," App. Phys. Lett. 93, 173110 (2008).
[CrossRef]

Maddalena, P.

S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
[CrossRef]

L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
[CrossRef]

Moretti, L.

Mulvaney, P.

S. A. Crawford, M. J. Higgins, P. Mulvaney, and R. Wetherbee, "Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy," J. Phycol. 37, 543-554 (2001).
[CrossRef]

Noyes, J.

J. Noyes, M. Sumper, and P. Vukusic, "Light manipulation in a marine diatom," J. Mater. Res. 23, 3229-3235 (2008).
[CrossRef]

Ohguchi, M.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

Parker, A. R.

A. R. Parker and H. E. Townley, "Biomimetics of photonic nanostructures," Nature Nanotech. 2, 347-353 (2007).
[CrossRef]

Rea, I.

Rendina, I.

L. De Stefano, I. Rea, I. Rendina,M. De Stefano, and L. Moretti, "Lensless light focusing with the centric marine diatom Coscinodiscus wailesii," Opt. Express 15, 18082 (2007).
[CrossRef] [PubMed]

L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
[CrossRef]

Rorrer, G. L.

D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
[CrossRef]

Rotiroti, L.

L. De Stefano, A. Lamberti, L. Rotiroti, and M. De Stefano, "Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter," Acta Biomat. 4, 126-130 (2008).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266, 1403-1411 (1999).
[CrossRef]

Schmid, A. M.

A. M. Schmid, "Intraclonal variation in the valve structure of Coscinodiscus wailesii Gran et Angst," Beih. Nova Hedw. 100, 101-119 (1990).

Setaro, A.

S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
[CrossRef]

Sumper, M.

J. Noyes, M. Sumper, and P. Vukusic, "Light manipulation in a marine diatom," J. Mater. Res. 23, 3229-3235 (2008).
[CrossRef]

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Takeda, H.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

Townley, H. E.

A. R. Parker and H. E. Townley, "Biomimetics of photonic nanostructures," Nature Nanotech. 2, 347-353 (2007).
[CrossRef]

Usami, H.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

van Santen, R. A.

E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, and W. W. C. Gieskes, "Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study," J. Phycol. 36, 146-159 (2000).
[CrossRef]

Vrieling, E. G.

E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, and W. W. C. Gieskes, "Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study," J. Phycol. 36, 146-159 (2000).
[CrossRef]

Vukusic, P.

J. Noyes, M. Sumper, and P. Vukusic, "Light manipulation in a marine diatom," J. Mater. Res. 23, 3229-3235 (2008).
[CrossRef]

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266, 1403-1411 (1999).
[CrossRef]

Wei, P. K.

J. Y. Lee, C.W. Lee, E. H. Lin, and P. K. Wei, "Single live cell refractometer using nanoparticle coated fiber tip," App. Phys. Lett. 93, 173110 (2008).
[CrossRef]

Wetherbee, R.

S. A. Crawford, M. J. Higgins, P. Mulvaney, and R. Wetherbee, "Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy," J. Phycol. 37, 543-554 (2001).
[CrossRef]

Wolf, E.

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266, 1403-1411 (1999).
[CrossRef]

Yamanaka, S.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

Yano, R.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

Yoshino, K.

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

Acta Biomat. (1)

L. De Stefano, A. Lamberti, L. Rotiroti, and M. De Stefano, "Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter," Acta Biomat. 4, 126-130 (2008).
[CrossRef]

Adv. Func. Mat. (2)

D. K. Gale, T. Gutu, J. Jiao, C.H. Chang, and G. L. Rorrer, "Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica," Adv. Func. Mat.,  19, 926-933 (2009).
[CrossRef]

S. Lettieri, A. Setaro, L. De Stefano, M. De Stefano, and P. Maddalena, "The gas-detection properties of lightemitting diatoms," Adv. Func. Mat. 18, 1257-1264 (2008).
[CrossRef]

App. Phys. Lett. (1)

J. Y. Lee, C.W. Lee, E. H. Lin, and P. K. Wei, "Single live cell refractometer using nanoparticle coated fiber tip," App. Phys. Lett. 93, 173110 (2008).
[CrossRef]

Appl. Phys. B (1)

T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, and M. Sumper, "Diatoms as living photonic crystals," Appl. Phys. B 78, 257-260 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

L. De Stefano, I. Rendina, M. De Stefano, A. Bismuto, and P. Maddalena, "Marine diatoms as optical chemical sensors," Appl. Phys. Lett. 87, 233902 (2005).
[CrossRef]

Beih. Nova Hedw. (1)

A. M. Schmid, "Intraclonal variation in the valve structure of Coscinodiscus wailesii Gran et Angst," Beih. Nova Hedw. 100, 101-119 (1990).

J. Appl. Phys. (1)

S. Yamanaka, R. Yano, H. Usami, N. Hayashida, M. Ohguchi, H. Takeda, and K. Yoshino, "Optical properties of diatom silica frustule with special reference to blue light," J. Appl. Phys. 103, 074701 (2008).
[CrossRef]

J. Mater. Res. (1)

J. Noyes, M. Sumper, and P. Vukusic, "Light manipulation in a marine diatom," J. Mater. Res. 23, 3229-3235 (2008).
[CrossRef]

J. of Nanosc. and Nanotech. (1)

M. De Stefano and L. De Stefano, "Nanostructures in diatom frustules: functional morphology of valvocopulae in cocconeidacean monoraphid Taxa," J. Nanosc. Nanotech. 5, 1-10 (2005).

J. Phycol. (2)

E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, and W. W. C. Gieskes, "Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study," J. Phycol. 36, 146-159 (2000).
[CrossRef]

S. A. Crawford, M. J. Higgins, P. Mulvaney, and R. Wetherbee, "Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy," J. Phycol. 37, 543-554 (2001).
[CrossRef]

Nature (1)

P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424, 852-855 (2003).
[CrossRef] [PubMed]

Nature Nanotech. (1)

A. R. Parker and H. E. Townley, "Biomimetics of photonic nanostructures," Nature Nanotech. 2, 347-353 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. R. Soc. Lond. B (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266, 1403-1411 (1999).
[CrossRef]

Other (2)

E. D. Palik, Handbook of optical constants of solids, (Academic Press, 1998).

M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed., (Pergamon Press, Oxford, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Figure 1.
Figure 1.

Scan electron microscope (SEM) images of the outer (a) and inner (b) plates of a single valve of C. wailesii and corresponding details (c and d, respectively). Scale bars are reported.

Figure 2.
Figure 2.

Experimental set-up for measurements with partially coherent light; a: TRIAX 180 monochromator equipped with a tungsten lamp; b: optical multimode fiber; c: collimating system; d: single diatom frustule on a glass slide; e: 20× microscope objective (NA: 0.3; focal length: 10 mm) f: CCD camera; g: PC for data acquisition and image analysis. The glass slide and the microscope objective are mounted on xyz micrometric translational stages.

Figure 3.
Figure 3.

Image of a single valve on the focal plane of the microscope objective and corresponding intensity distribution (a); image of the same valve at a distance z = 105 µm from the focal plane of the microscope objective and corresponding intensity distribution (b). Light source: tungsten lamp coupled with a TRIAX-180 monochromator; incident wavelength: 633 nm (see also Fig.4).

Figure 4.
Figure 4.

Distance z* of maximum intensity of the transmitted spot as a function of the wavelength of the incoming light beam.

Figure 5.
Figure 5.

Transversal dimension of the transmitted spot (expressed as Full Width at Half Maximum (FWHM) of the intensity distribution over a diameter of the frustule for z = z*) as a function of the wavelength of the incoming beam.

Figure 6.
Figure 6.

Geometrical model of a frustule valve used in numerical simulations. The valve lies in the xy plane and the incoming rectangular wavefront travels along the z direction. The outer and inner plates have thicknesses t 1 and t 3 of 360 nm, and are separated by a layer of air 280 nm thick. At the center of the figure, the transverse refractive index profiles lieing in the xy plane for the outer and inner plates and for λ = 1 µm are reported. On the right, details for each plate are reported.

Figure 7.
Figure 7.

Spatial distribution of transmitted power for λ = 280 nm (a), λ = 532 nm (b), λ = 633 nm (c) and λ = 1 µm (d). Valve extends from z = −0.6 µm to z = 0.4 µm. Red arrow points at the direction of propagation of the incoming light. Power associated to the incoming field is set to 0.08 (a.u.).

Figure 8.
Figure 8.

xy power distribution for λ = 633 nm and for z = z* = 180.5 µm (a) and corresponding detail (b); c: power distribution over x direction: the FWHM is lower than the diffraction limit of a lens with the same dimensions of the frustule.

Figure 9.
Figure 9.

Calculated spatial distribution of transmitted power for a valve immersed in water (a) and in cytoplasm (b), at λ = 633 nm. Dashed line shows the contour of the whole frustule.

Tables (1)

Tables Icon

Table 1. Power distribution FWHMs and corresponding diffraction limits for different values of incoming wavelength.

Metrics