Abstract

A half-filling technique was demonstrated to improve the bending properties of a fluid-filled photonic crystal fiber. Such a technique can realize to fill selectively a fluid into half of air holes in a PCF. The bending properties of the half-filled PCF are quite different from those of the fully-filled PCF. Distinct bending properties were observed when the half-filled PCF was bent toward different fiber orientations. Especially, the transmission spectrum of the half-filled PCF was hardly affected while the fiber was bent toward the filled-hole orientation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
    [CrossRef] [PubMed]
  2. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and Exhibit, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002) 466–468 (2002).
  3. Y. Wang, X. Tan, W. Jin, D. Ying, Y. L. Hoo, and S. Liu, “Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications,” Opt. Lett. 35(1), 88–90 (2010).
    [CrossRef] [PubMed]
  4. J. Lægsgaard and T. T. Alkeskjold, “Designing a photonic bandgap fiber for thermo-optic switching,” J. Opt. Soc. Am. B 23(5), 951–957 (2006).
    [CrossRef]
  5. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  6. Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
    [CrossRef] [PubMed]
  7. Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
    [CrossRef]
  8. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006).
    [CrossRef] [PubMed]
  9. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
    [CrossRef]
  10. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79(19), 3191–3193 (2001).
    [CrossRef]
  11. C.-P. Yu, J.-H. Liou, S.-S. Huang, and H.-C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16(7), 4443–4451 (2008).
    [CrossRef] [PubMed]
  12. A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, “Modulating dispersion properties of low index photonic crystal structures using microfluidics,” Opt. Express 13(8), 2814–2827 (2005).
    [CrossRef] [PubMed]
  13. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006).
    [CrossRef] [PubMed]
  14. A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, and P. St J Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
    [CrossRef] [PubMed]
  15. G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
    [CrossRef]
  16. T. Murao, K. Saitoh, and M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express 17(9), 7615–7629 (2009).
    [CrossRef] [PubMed]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002).
    [CrossRef]
  18. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
    [CrossRef]
  19. K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
    [CrossRef]
  20. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [CrossRef]
  21. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  22. S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
    [CrossRef] [PubMed]
  23. Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
    [CrossRef] [PubMed]
  24. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
    [CrossRef] [PubMed]
  25. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [CrossRef]
  26. Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
    [CrossRef]
  27. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
    [CrossRef] [PubMed]
  28. Y.-P. Wang and Y.-J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
    [CrossRef]

2010 (3)

2009 (5)

2008 (3)

2007 (2)

2006 (5)

T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006).
[CrossRef] [PubMed]

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

J. Lægsgaard and T. T. Alkeskjold, “Designing a photonic bandgap fiber for thermo-optic switching,” J. Opt. Soc. Am. B 23(5), 951–957 (2006).
[CrossRef]

P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006).
[CrossRef] [PubMed]

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[CrossRef]

2005 (4)

A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, and P. St J Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
[CrossRef] [PubMed]

A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, “Modulating dispersion properties of low index photonic crystal structures using microfluidics,” Opt. Express 13(8), 2814–2827 (2005).
[CrossRef] [PubMed]

Y.-P. Wang and Y.-J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[CrossRef]

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

2004 (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (2)

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79(19), 3191–3193 (2001).
[CrossRef]

Alkeskjold, T. T.

Argyros, A.

Bartelt, H.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Bird, D. M.

Birks, T.

Birks, T. A.

Bjarklev, A.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Broeng, J.

Brueckner, S.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Chang, H.-C.

Cordeiro, C. M. B.

Demokan, M. S.

Ecke, W.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Eggleton, B. J.

Hale, A.

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

Hermann, D.

Ho, H. L.

Hoo, Y. L.

Huang, S.-S.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Iredale, T. B.

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[CrossRef]

Jin, L.

Jin, W.

Y. Wang, X. Tan, W. Jin, D. Ying, Y. L. Hoo, and S. Liu, “Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications,” Opt. Lett. 35(1), 88–90 (2010).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
[CrossRef] [PubMed]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
[CrossRef] [PubMed]

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
[CrossRef] [PubMed]

Ju, J.

Kautz, M.

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Kerbage, C.

Knight, J. C.

Kobelke, J.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Koshiba, M.

Kuhlmey, B. T.

Lægsgaard, J.

Larsen, T.

Lehmann, H.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Leon-Saval, S.

Liao, C.

Liou, J.-H.

Liu, S.

Luan, F.

Luo, J.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Mägi, E. C.

McBride, S.

Moerl, K.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Moore, E. D.

Mörl, K.

Murao, T.

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

Pearce, G. J.

Prather, D.

Pustai, D.

Rao, Y.-J.

Y.-P. Wang and Y.-J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[CrossRef]

Ren, G.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Reyes, P.

Rothhardt, M.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Saitoh, K.

Schroeder, K.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Shan, L.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Sharkawy, A.

Shi, S.

Shum, P.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Sorensen, T.

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

Spittel, R.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

St J Russell, P.

Steinvurzel, P.

Tan, X.

Tong, W.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Wang, A.

Wang, D.

Wang, Y.

S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, X. Tan, W. Jin, D. Ying, Y. L. Hoo, and S. Liu, “Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications,” Opt. Lett. 35(1), 88–90 (2010).
[CrossRef] [PubMed]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
[CrossRef] [PubMed]

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Wang, Y.-P.

Y.-P. Wang and Y.-J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[CrossRef]

Westbrook, P. S.

Willsch, R.

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Windeler, R. S.

Wu, D. K. C.

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Xuan, H.

Yablon, A.

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79(19), 3191–3193 (2001).
[CrossRef]

Yan, M.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Ying, D.

Yu, C.-P.

Yu, X.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Zanzucchi, P.

Zhang, L.

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

Zhao, C.-L.

Appl. Phys. Lett. (2)

C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79(19), 3191–3193 (2001).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Electron. Lett. (1)

T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010).
[CrossRef]

G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006).
[CrossRef]

IEEE Sens. J. (1)

Y.-P. Wang and Y.-J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009).
[CrossRef]

Opt. Express (11)

L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
[CrossRef] [PubMed]

S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
[CrossRef] [PubMed]

Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008).
[CrossRef] [PubMed]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001).
[CrossRef] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express 17(9), 7615–7629 (2009).
[CrossRef] [PubMed]

C.-P. Yu, J.-H. Liou, S.-S. Huang, and H.-C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16(7), 4443–4451 (2008).
[CrossRef] [PubMed]

A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, “Modulating dispersion properties of low index photonic crystal structures using microfluidics,” Opt. Express 13(8), 2814–2827 (2005).
[CrossRef] [PubMed]

T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006).
[CrossRef] [PubMed]

A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, and P. St J Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
[CrossRef] [PubMed]

Opt. Lett. (5)

Other (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and Exhibit, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002) 466–468 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram for filling a fluid into about half of holes in the PCF; Cross-section of the (b) unfilled and (c) half-filled PCFs; Side images of (d) the grooved PCF, (e) the PCF spherical end, and (f) the half-filled PCF. (d), (e) and (f) were observed by the use of a microscope whose focal plane was adjusted to the fiber axis. In (c), the fluid overflowed on the hole ends as a result of the vacuum during scanning electron micrographs, where the ‘0°’ orientation corresponds to the direction being perpendicular to the bottom of the groove.

Fig. 2
Fig. 2

Transmission spectra of the fully- and half-filled PCFs, where three bandgaps, gap1, gap2, and gap3, were observed within the measured wavelength range.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup for measuring the bending properties of the fluid-filled PCFs.

Fig. 4
Fig. 4

Transmission spectrum evolutions of (a) the fully-filled PCF and the half-filled PCF bent toward the (b) 0°, (c) 90°, (e)180° and (f) 270° orientations with the decrease of the bend radius; (d) Wavelengths, corresponding to the transmission of −20dB, at the ‘blue’ edge of the second bandgap (see ‘red’ circles in (a), (b), (c), (e), and (f)) with the increase of the bend curvature.

Fig. 5
Fig. 5

Bandgap structure (grey region) and effective index (red curve) of the core mode in the PCF in which all air holes are fully filled by a fluid with a refractive index of 1.480, where Δn - and Δn + illustrates respectively the downward and upward effective index mismatches between the core mode and the bands; the dash line illustrates the background pure silica index nBG = 1.450.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C = 2 H / ( H 2 + L 2 / 4 )

Metrics