Abstract

A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be –32 rad/(Tm), which is 27 × larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics–based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 ± 4°.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante
Opt. Lett. 35(5) 706-708 (2010)

All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber

L. Sun, S. Jiang, and J. R. Marciante
Opt. Express 18(6) 5407-5412 (2010)

Effective Verdet constant in a terbium-doped-core phosphate fiber

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante
Opt. Lett. 34(11) 1699-1701 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
    [Crossref]
  2. G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors,” Opt. Lett. 7(5), 238–240 (1982).
    [Crossref] [PubMed]
  3. V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
    [Crossref]
  4. K. Shiraishi, S. Sugaya, and S. Kawakami, “Fiber Faraday rotator,” Appl. Opt. 23(7), 1103–1106 (1984).
    [Crossref] [PubMed]
  5. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
    [Crossref] [PubMed]
  6. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. 35(5), 706–708 (2010).
    [Crossref] [PubMed]
  7. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical Faraday mirror using 56-wt% terbium-doped fiber,” IEEE Photon. Technol. Lett. (submitted to).
  8. V. I. Kopp, V. M. Churikov, and A. Z. Genack, “Synchronization of optical polarization conversion and scattering in chiral fibers,” Opt. Lett. 31(5), 571–573 (2006).
    [Crossref] [PubMed]
  9. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref] [PubMed]
  10. S. B. Zhang, R. A. Kopp, V. Churikov, and G. Zhang, “PANDA-based in-fiber linear polarizers,” in Optical Components and Materials VI, S. Jiang, M. J. F. Digonnet, J. W. Glesener, and J. C. Dies eds. (SPIE, Bellingham, WA, 2009), Vol. 7212, p. 72120D.
  11. W. E. Gettys, F. J. Keller, and M. J. Skove, Physics, Classical and Modern (McGraw-Hill, New York, 1989).

2010 (2)

2009 (1)

2006 (1)

1995 (2)

J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
[Crossref] [PubMed]

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[Crossref]

1984 (1)

1982 (1)

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[Crossref]

Ballato, J.

Barlow, A. J.

Boyland, A. J.

Chung, S.

Churikov, V. M.

Day, G. W.

Donati, S.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[Crossref]

Genack, A. Z.

Jeong, Y.

Jiang, S.

Kawakami, S.

Kopp, V. I.

Leona, A.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[Crossref]

Marciante, J. R.

Merlo, S.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[Crossref]

Nilsson, J.

Payne, D. N.

Ramskov-Hansen, J. J.

Sahu, J. K.

Shiraishi, K.

Snitzer, E.

Sugaya, S.

Sun, L.

Zuegel, J. D.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical Faraday mirror using 56-wt% terbium-doped fiber,” IEEE Photon. Technol. Lett. (submitted to).

J. Lightwave Technol. (1)

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence,” J. Lightwave Technol. 13(12), 2349–2353 (1995).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Express (1)

Opt. Lett. (3)

Other (2)

S. B. Zhang, R. A. Kopp, V. Churikov, and G. Zhang, “PANDA-based in-fiber linear polarizers,” in Optical Components and Materials VI, S. Jiang, M. J. F. Digonnet, J. W. Glesener, and J. C. Dies eds. (SPIE, Bellingham, WA, 2009), Vol. 7212, p. 72120D.

W. E. Gettys, F. J. Keller, and M. J. Skove, Physics, Classical and Modern (McGraw-Hill, New York, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Measured rotation angle (circle) and corresponding curve fit (solid) at a wavelength of 1053 nm as a function of the magnet location along the fiber axis z.
Fig. 2
Fig. 2 Measured (dots) and curve fit (line) Verdet constants of the 54-wt%-Tb fiber, 56-wt%-Tb fiber, 65-wt%-Tb fiber, and TGG as functions of Tb3+ concentration.
Fig. 3
Fig. 3 Experimental configuration of the all-fiber Faraday isolator.
Fig. 4
Fig. 4 Experimental configuration of the all-fiber Faraday mirror.
Fig. 5
Fig. 5 Polarization-state measurement of the input and output light of Faraday mirror. Squares and circles are measurement points of the input and output light, respectively. Dashed and solid lines are curve fits of the input and output light, respectively.

Metrics