Abstract

We have developed low-loss polymer artificial dielectric quarter wave plates (QWP) operating at 2.6, 3.2 and 3.8 THz. The QWPs are imprinted on high density polyethylene (HDPE) using silicon masters. The grating period for the quarter wave plates is 60 µm. 330 µm, 280 μm and 230 μm deep gratings are used to obtain a π/2 phase retardance between TE and TM polarization propagating through the QWPs. High frequency structure simulator (HFSS) was used to optimize the grating depth. Since the required grating depth is high, two plates, fixed in a back-to-back configuration were used for each QWP. A maximum aspect ratio (grating height/grating width) of 6.6 was used.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Petkie, C. Casto, F. C. De Lucia, S. R. Murrill, B. Redman, R. L. Espinola, C. C. Franck, E. L. Jacobs, S. T. Griffin, C. E. Halford, J. Reynolds, S. O’Brien, and D. Tofsted, “Active and Passive imaging in the THz spectral region: phenomenonlogy, dynamic range, modes and illumination,” J. Opt. Soc. Am. B 25(9), 1523–1531 (2008).
    [CrossRef]
  2. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
    [CrossRef]
  3. T. D. Drysdale, R. J. Blaikie, H. M. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antenn. Propag. 51(11), 3072–3079 (2003).
    [CrossRef]
  4. E. D. Walsby, J. Alton, C. Worrall, H. E. Beere, D. A. Ritchie, and D. R. S. Cumming, “Imprinted diffractive optics for terahertz radiation,” Opt. Lett. 32(9), 1141–1143 (2007).
    [CrossRef]
  5. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
    [CrossRef]
  6. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
    [CrossRef]
  7. M. J. Khan, J. C. Chen, and S. Kaushik, “Optical detection of terahertz using nonlinear parametric upconversion,” Opt. Lett. 33(23), 2725–2727 (2008).
    [CrossRef]
  8. A. H. F. van Vliet and T. de Graauw, “Quarter wave plate for sub-millimetre wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
    [CrossRef]
  9. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16(21), 16334–16342 (2008).
    [CrossRef]
  10. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [CrossRef]
  11. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
    [CrossRef]
  12. W. Frank, “Far-infrared spectrum of irradiated polyethylene,” Polymer. Letters. Edition. 15(11), 679–682 (1977).
    [CrossRef]
  13. G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
    [CrossRef]
  14. D. Raguin and G. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993).
    [CrossRef]
  15. W. Liao and S. Hsu, “High aspect ratio pattern transfer in imprint lithography using a hybrid mold,” J. Vac. Sci. Technol. B 22(6), 2764–2767 (2004).
    [CrossRef]
  16. B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [CrossRef]
  17. H. F. S. S. Ansoft, v11 from Ansys Inc ( www.ansoft.com , 10.08.2009).
  18. S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

2010 (1)

S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

2009 (2)

Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
[CrossRef]

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

2008 (4)

2007 (2)

2006 (1)

2005 (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[CrossRef]

2004 (1)

W. Liao and S. Hsu, “High aspect ratio pattern transfer in imprint lithography using a hybrid mold,” J. Vac. Sci. Technol. B 22(6), 2764–2767 (2004).
[CrossRef]

2003 (1)

T. D. Drysdale, R. J. Blaikie, H. M. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antenn. Propag. 51(11), 3072–3079 (2003).
[CrossRef]

1993 (1)

1981 (1)

A. H. F. van Vliet and T. de Graauw, “Quarter wave plate for sub-millimetre wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

1977 (1)

W. Frank, “Far-infrared spectrum of irradiated polyethylene,” Polymer. Letters. Edition. 15(11), 679–682 (1977).
[CrossRef]

1971 (1)

G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
[CrossRef]

Alton, J.

Beere, H. E.

Blaikie, R. J.

T. D. Drysdale, R. J. Blaikie, H. M. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antenn. Propag. 51(11), 3072–3079 (2003).
[CrossRef]

Casto, C.

Chantry, G.

G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
[CrossRef]

Chen, J. C.

Chong, H. M.

T. D. Drysdale, R. J. Blaikie, H. M. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antenn. Propag. 51(11), 3072–3079 (2003).
[CrossRef]

Cudby, M.

G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
[CrossRef]

Cumming, D.

S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

Cumming, D. R. S.

de Graauw, T.

A. H. F. van Vliet and T. de Graauw, “Quarter wave plate for sub-millimetre wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

De Lucia, F. C.

Drysdale, T. D.

Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
[CrossRef]

T. D. Drysdale, R. J. Blaikie, H. M. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antenn. Propag. 51(11), 3072–3079 (2003).
[CrossRef]

Espinola, R. L.

Fedorov, G.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Fleming, J.

G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
[CrossRef]

Franck, C. C.

Frank, W.

W. Frank, “Far-infrared spectrum of irradiated polyethylene,” Polymer. Letters. Edition. 15(11), 679–682 (1977).
[CrossRef]

Gallot, G.

Grant, J.

S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

Griffin, S. T.

Halford, C. E.

Hsu, S.

W. Liao and S. Hsu, “High aspect ratio pattern transfer in imprint lithography using a hybrid mold,” J. Vac. Sci. Technol. B 22(6), 2764–2767 (2004).
[CrossRef]

Hu, Q.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Jacob, M.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[CrossRef]

Jacobs, E. L.

Kaushik, S.

Khalid, A.

S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
[CrossRef]

Khan, M. J.

Koch, M.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[CrossRef]

Kuittinen, M.

Kumar, S.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Kürner, T.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[CrossRef]

Laakkonen, P.

Liao, W.

W. Liao and S. Hsu, “High aspect ratio pattern transfer in imprint lithography using a hybrid mold,” J. Vac. Sci. Technol. B 22(6), 2764–2767 (2004).
[CrossRef]

Ma, Y.

S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
[CrossRef]

Masson, J. B.

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[CrossRef]

Morris, G.

Murrill, S. R.

Naftaly, M.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[CrossRef]

O’Brien, S.

Päivänranta, B.

Passilly, N.

Petkie, D. T.

Piesiewicz, R.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[CrossRef]

Pietarinen, J.

Raguin, D.

Redman, B.

Reno, J. L.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Reynolds, J.

Ritchie, D. A.

Saha, S.

S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

Schoebel, J.

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[CrossRef]

Smirnov, D.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Smith, P.

G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
[CrossRef]

Tervo, J.

Tofsted, D.

van Vliet, A. H. F.

A. H. F. van Vliet and T. de Graauw, “Quarter wave plate for sub-millimetre wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

Wade, A.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Walsby, E. D.

Williams, B.

B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

Williams, B. S.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Willis, H.

G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
[CrossRef]

Worrall, C.

Appl. Opt. (1)

Chem. Phys. Lett. (1)

G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

T. D. Drysdale, R. J. Blaikie, H. M. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antenn. Propag. 51(11), 3072–3079 (2003).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

A. H. F. van Vliet and T. de Graauw, “Quarter wave plate for sub-millimetre wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981).
[CrossRef]

J. IEEE PTL (1)

S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010).

J. Non-Cryst. Solids (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

W. Liao and S. Hsu, “High aspect ratio pattern transfer in imprint lithography using a hybrid mold,” J. Vac. Sci. Technol. B 22(6), 2764–2767 (2004).
[CrossRef]

Nat. Photonics (2)

B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Polymer. Letters. Edition. (1)

W. Frank, “Far-infrared spectrum of irradiated polyethylene,” Polymer. Letters. Edition. 15(11), 679–682 (1977).
[CrossRef]

Other (1)

H. F. S. S. Ansoft, v11 from Ansys Inc ( www.ansoft.com , 10.08.2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics