Abstract

A coupled resonator was developed for high efficient room-temperature single-frequency laser operating near 2 μm optical spectral region. 721 mW stable single-longitudinal-mode oscillation at 1991 nm was obtained when the absorbed pumping power was 2.4 W. The optical-to-optical efficiency was 30%, and the slope efficiency was 46%. 5 nm of frequency tuning range was obtained with stable output power. The beam propagation factors M2 were 1.43 and 1.42 in x and y directions, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, “Frequency stabilization of Ho: Tm: YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39(21), 3664–3669 (2000).
    [CrossRef]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
    [CrossRef]
  3. L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “ Tm: YAlO3 Laser Pumped ZGP Mid-IR Source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.
  4. A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4-μm ZGP RISTRA Nanosecond Optical Parametric Oscillator Pumped by a 2.05-μm Ho:YLF MOPA System,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.
  5. U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
    [CrossRef]
  6. Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
    [CrossRef]
  7. C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
    [CrossRef]
  8. C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett. 35(2), 152–153 (1999).
    [CrossRef]
  9. C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
    [CrossRef] [PubMed]
  10. Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
    [CrossRef]
  11. C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
    [CrossRef]
  12. C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
    [CrossRef]
  13. M. Munroe, S. E. Hodges, J. Cooper, and M. G. Raymer, “Total intensity modulation and mode hopping in a coupled-cavity laser as a result of external-cavity length variation,” Opt. Lett. 19(2), 105–107 (1994).
    [CrossRef] [PubMed]
  14. H. K. Choi, K. L. Chen, and S. Wang, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20(4), 385–393 (1984).
    [CrossRef]
  15. S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single Frequency Oscillation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Mag Appl. Phys. Instrum. 16(1), 18–23 (2003).
  16. Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
    [CrossRef]
  17. J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
    [CrossRef]
  18. T. M. Kane and T. S. Kubo, “Diode-Pumped Single-Frequency Lasers and Q-Switched Laser Using Tm: YAG and Tm, Ho: YAG,” in Advanced Solid State Lasers, G. Dube, ed., Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper ML3.

2010 (2)

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
[CrossRef]

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
[CrossRef]

2009 (3)

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
[CrossRef]

2008 (1)

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

2006 (1)

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

2003 (1)

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single Frequency Oscillation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Mag Appl. Phys. Instrum. 16(1), 18–23 (2003).

2001 (1)

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
[CrossRef]

2000 (1)

1999 (1)

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett. 35(2), 152–153 (1999).
[CrossRef]

1997 (1)

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

1994 (1)

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

1984 (1)

H. K. Choi, K. L. Chen, and S. Wang, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20(4), 385–393 (1984).
[CrossRef]

Barnes, N. P.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Chen, F.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

Chen, K. L.

H. K. Choi, K. L. Chen, and S. Wang, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20(4), 385–393 (1984).
[CrossRef]

Choi, H. K.

H. K. Choi, K. L. Chen, and S. Wang, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20(4), 385–393 (1984).
[CrossRef]

Cooper, J.

Dai, Y.

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

Dharamsi, A. N.

Fitzgerald, C. M.

Freitag, I.

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett. 35(2), 152–153 (1999).
[CrossRef]

Gao, C.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Gao, M.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
[CrossRef]

Gesse Nogueira, E. C.

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single Frequency Oscillation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Mag Appl. Phys. Instrum. 16(1), 18–23 (2003).

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Hara, H.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Hodges, S. E.

Hu, D. X.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
[CrossRef]

Ju, Y. L.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

Koch, G. J.

Li, J.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
[CrossRef]

Li, S.

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

Lin, Z.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Lockard, G. E.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Lu, Y.

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

McCarthy, J. C.

Mizutani, K.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
[CrossRef]

Modlin, E. A.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Munroe, M.

Nagasawa, C.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
[CrossRef]

Nakajima, H.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
[CrossRef]

Paulo de Matos, S. F.

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single Frequency Oscillation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Mag Appl. Phys. Instrum. 16(1), 18–23 (2003).

Petros, M.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Raymer, M. G.

Singh, U. N.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Song, C. W.

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

Sun, B.

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Suzuki, T.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
[CrossRef]

Svelto, C.

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett. 35(2), 152–153 (1999).
[CrossRef]

Wang, J.

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

Wang, Q.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

Wang, R.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
[CrossRef]

Wang, S.

H. K. Choi, K. L. Chen, and S. Wang, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20(4), 385–393 (1984).
[CrossRef]

Wang, Y. Z.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

Wang, Z. G.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

Weber, H.

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
[CrossRef]

Wetter Niklaus, U.

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single Frequency Oscillation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Mag Appl. Phys. Instrum. 16(1), 18–23 (2003).

Williams-Byrda, J. A.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Wu, C. T.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

Yang, S. H.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
[CrossRef]

Yang, Y.

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

Yu, J.

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

Zhang, H. Y.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
[CrossRef]

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
[CrossRef]

C. Gao, M. Gao, Y. Zhang, Z. Lin, and L. Zhu, “Stable single-frequency output at 2.01 microm from a diode-pumped monolithic double diffusion-bonded Tm:YAG nonplanar ring oscillator at room temperature,” Opt. Lett. 34(19), 3029–3031 (2009).
[CrossRef] [PubMed]

Zhao, C. M.

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
[CrossRef]

Zhou, R. L.

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

Zhu, L.

Appl. Opt. (1)

Appl. Phys. B (1)

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, “Diode-pumped single-frequency microchip CTH: YAG lasers using different pump spot diameters,” Appl. Phys. B 94(1), 81–84 (2009).
[CrossRef]

Electron. Lett. (1)

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150mW single-frequency output power at 2.02 μm,” Electron. Lett. 35(2), 152–153 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. K. Choi, K. L. Chen, and S. Wang, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20(4), 385–393 (1984).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent Laser Radar at 2μm Using Solid-state Lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[CrossRef]

J. Cryst. Growth (1)

Y. Lu, J. Wang, Y. Yang, Y. Dai, B. Sun, and S. Li, “Czochralski growth of YAP crystal doped with high Tm concentration,” J. Cryst. Growth 292(2), 381–385 (2006).
[CrossRef]

Laser Phys. Lett. (4)

J. Li, S. H. Yang, H. Y. Zhang, D. X. Hu, and C. M. Zhao, “Diode-pumped room temperature single frequency Tm: YAP laser,” Laser Phys. Lett. 7(3), 203–205 (2010).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7(1), 17–20 (2010).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm: YAG laser at room temperature,” Laser Phys. Lett. 5(11), 793–796 (2008).
[CrossRef]

C. T. Wu, Y. L. Ju, Q. Wang, Z. G. Wang, F. Chen, R. L. Zhou, and Y. Z. Wang, “Room temperature operation of single frequency Tm: LuAG laser end-pumped by laser-diode,” Laser Phys. Lett. 6(10), 707–710 (2009).
[CrossRef]

Mag Appl. Phys. Instrum. (1)

S. F. Paulo de Matos, U. Wetter Niklaus, and E. C. Gesse Nogueira, “Single Frequency Oscillation in a Coupled Cavity ND: GYLF Laser by Interferometric Control of the Cavity’s Length,” Mag Appl. Phys. Instrum. 16(1), 18–23 (2003).

Opt. Commun. (1)

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of 2 μm Tm, Ho: YLF microchip laser,” Opt. Commun. 200(1–6), 315–319 (2001).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

U. N. Singh, J. A. Williams-Byrda, N. P. Barnes, J. Yu, M. Petros, G. E. Lockard, and E. A. Modlin, “Diode pumped 2-μm solid state lidar transmitter for wind measurements,” Proc. SPIE 3104, 173–178 (1997).
[CrossRef]

Other (3)

T. M. Kane and T. S. Kubo, “Diode-Pumped Single-Frequency Lasers and Q-Switched Laser Using Tm: YAG and Tm, Ho: YAG,” in Advanced Solid State Lasers, G. Dube, ed., Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper ML3.

L. A. Pomeranz, P. A. Ketteridge, P. A. Budni, K. M. Ezzo, D. M. Rines, and E. P. Chicklis, “ Tm: YAlO3 Laser Pumped ZGP Mid-IR Source,” in Advanced Solid-State Photonics, J. Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 142.

A. Dergachev, D. Armstrong, A. Smith, T. E. Drake, and M. Dubois, “3.4-μm ZGP RISTRA Nanosecond Optical Parametric Oscillator Pumped by a 2.05-μm Ho:YLF MOPA System,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of single-frequency Tm:YAP coupled cavity laser.

Fig. 2
Fig. 2

(a) Effective reflectivity of the passive cavity; (b) Transmission of the 0.1mm uncoated etalon.

Fig. 3
Fig. 3

Fabry-Perot scan of the Tm:YAP lasers, (a) Free running, multimode oscillation; (b) Single longitudinal mode oscillation.

Fig. 4
Fig. 4

Output power of free running and single frequency Tm:YAP lasers versus absorbed pump power.

Fig. 5
Fig. 5

Single-frequency output power at different wavelength.

Fig. 6
Fig. 6

Output power with respect to the temperature of the laser crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R e f f = ( R 1 R 2 ) 2 + 4 R 1 R 2 sin 2 ( 2 π n d λ ) ( 1 R 1 R 2 ) 2 + 4 R 1 R 2 sin 2 ( 2 π n d λ )
d ν d T = ν [ 1 n d n d T + α ] .

Metrics