Abstract

The visible emission of BaMgAl10O17:Eu2+ used for White LED and ACPDPs was enhanced by coupling electric transition with the localized surface plasmon oscillation of nanoscaled Ag particles. Phosphor films including Ag particles were prepared by the spin-coating method. Up to a 36% enhancement of the peak intensity, which was dependent on the morphology and concentration of Ag particles, was obtained. It was verified that the spectral overlap between the LSP energy of metal particle and the emission spectra of phosphor materials decided between the enhancement and quenching of the emission. It was indicated that localized field enhancement due to the LSPR of metal nanoparticles could improve the emission intensity of phosphor doped rare earth ions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
    [CrossRef]
  2. K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, “Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films,” J Phys Chem C Nanomater Interfaces 112(47), 18368–18375 (2008).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  4. E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces,” Nano Lett. 10(3), 813–820 (2010).
    [CrossRef] [PubMed]
  5. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  6. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).
  7. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
    [CrossRef]
  8. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
    [CrossRef]
  9. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
    [CrossRef] [PubMed]
  10. C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
    [CrossRef]
  11. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
    [CrossRef]
  12. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [CrossRef]
  13. H. Nabika and S. Deki, “Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase,” J. Phys. Chem. B 107(35), 9161–9164 (2003).
    [CrossRef]
  14. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
    [CrossRef]
  15. M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
    [CrossRef] [PubMed]
  16. T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
    [CrossRef]
  17. O. L. Malta, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
    [CrossRef]
  18. O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles,” Chem. Phys. Lett. 116(5), 396–399 (1985).
    [CrossRef]
  19. Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
    [CrossRef]
  20. Y. Liu and C. Shi, “Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor,” Mater. Res. Bull. 36(1-2), 109–115 (2001).
    [CrossRef]
  21. H. Ryu, B. Singh, and K. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Physica B 403(1), 126–130 (2008).
    [CrossRef]
  22. T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
    [CrossRef]

2010

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces,” Nano Lett. 10(3), 813–820 (2010).
[CrossRef] [PubMed]

2009

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

2008

H. Ryu, B. Singh, and K. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Physica B 403(1), 126–130 (2008).
[CrossRef]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, “Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films,” J Phys Chem C Nanomater Interfaces 112(47), 18368–18375 (2008).

2007

2006

Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[CrossRef]

2005

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. Nabika and S. Deki, “Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase,” J. Phys. Chem. B 107(35), 9161–9164 (2003).
[CrossRef]

2002

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

2001

Y. Liu and C. Shi, “Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor,” Mater. Res. Bull. 36(1-2), 109–115 (2001).
[CrossRef]

1999

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

1990

O. L. Malta, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
[CrossRef]

1985

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles,” Chem. Phys. Lett. 116(5), 396–399 (1985).
[CrossRef]

Ahn, C. W.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

Aslan, K.

K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, “Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films,” J Phys Chem C Nanomater Interfaces 112(47), 18368–18375 (2008).

M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
[CrossRef] [PubMed]

Auzel, F.

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles,” Chem. Phys. Lett. 116(5), 396–399 (1985).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Bartwal, K.

H. Ryu, B. Singh, and K. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Physica B 403(1), 126–130 (2008).
[CrossRef]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

Chen, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Cheng, P.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Cho, C.

C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Cho, C. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

Choi, K. C.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

Chowdhury, M. H.

Davis, C. C.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces,” Nano Lett. 10(3), 813–820 (2010).
[CrossRef] [PubMed]

De Sa, G. F.

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles,” Chem. Phys. Lett. 116(5), 396–399 (1985).
[CrossRef]

Deki, S.

H. Nabika and S. Deki, “Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase,” J. Phys. Chem. B 107(35), 9161–9164 (2003).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Geddes, C. D.

K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, “Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films,” J Phys Chem C Nanomater Interfaces 112(47), 18368–18375 (2008).

M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
[CrossRef] [PubMed]

Gong, M.

Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[CrossRef]

Gray, S. K.

Hayakawa, T.

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Hwang, E.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces,” Nano Lett. 10(3), 813–820 (2010).
[CrossRef] [PubMed]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

Kim, Y.

C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Kwon, M. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

Lakowicz, J. R.

Lei, D. Y.

D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
[CrossRef]

Li, D.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Liu, Y.

Y. Liu and C. Shi, “Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor,” Mater. Res. Bull. 36(1-2), 109–115 (2001).
[CrossRef]

Malta, O. L.

O. L. Malta, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
[CrossRef]

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles,” Chem. Phys. Lett. 116(5), 396–399 (1985).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Nabika, H.

H. Nabika and S. Deki, “Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase,” J. Phys. Chem. B 107(35), 9161–9164 (2003).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nogami, M.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ong, H. C.

D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
[CrossRef]

Paik, U.

C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Park, D.

C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

Park, S. J.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

Pond, J.

Previte, M. J.

K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, “Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films,” J Phys Chem C Nanomater Interfaces 112(47), 18368–18375 (2008).

Ryu, H.

H. Ryu, B. Singh, and K. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Physica B 403(1), 126–130 (2008).
[CrossRef]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Santa-Cruz, P. A.

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles,” Chem. Phys. Lett. 116(5), 396–399 (1985).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Selvan, S. T.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Shi, C.

Y. Liu and C. Shi, “Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor,” Mater. Res. Bull. 36(1-2), 109–115 (2001).
[CrossRef]

Shi, J.

Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Singh, B.

H. Ryu, B. Singh, and K. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Physica B 403(1), 126–130 (2008).
[CrossRef]

Smolyaninov, I. I.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces,” Nano Lett. 10(3), 813–820 (2010).
[CrossRef] [PubMed]

Su, Q.

Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[CrossRef]

Tamil Selvan, S.

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

Wang, J.

Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[CrossRef]

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Wu, Z.

Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[CrossRef]

Yang, D.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Yang, K. Y.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Yuan, Z.

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Zang, D.

C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

Zhang, Y.

K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, “Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films,” J Phys Chem C Nanomater Interfaces 112(47), 18368–18375 (2008).

Adv. Mater.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-Plasmon-Enhanced Light-Emitting Diodes*,” Adv. Mater. 9999, 1–5 (2008).

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Appl. Phys. Lett.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007).
[CrossRef]

C. Cho, U. Paik, D. Park, Y. Kim, and D. Zang, “Design of fine phosphor system for the improvement in the luminescent properties of the phosphor layer in the plasma display panel: Theoretical and experimental analysis,” Appl. Phys. Lett. 93(3), 031505 (2008).
[CrossRef]

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Chem. Phys. Lett.

O. L. Malta, “Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles,” Chem. Phys. Lett. 174(1), 13–18 (1990).
[CrossRef]

O. L. Malta, P. A. Santa-Cruz, G. F. De Sa, and F. Auzel, “Time evolution of the decay of the 5Do level of Eu3+ in glass materials doped with small silver particles,” Chem. Phys. Lett. 116(5), 396–399 (1985).
[CrossRef]

J Phys Chem C Nanomater Interfaces

K. Aslan, M. J. Previte, Y. Zhang, and C. D. Geddes, “Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films,” J Phys Chem C Nanomater Interfaces 112(47), 18368–18375 (2008).

J. Non-Cryst. Solids

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

H. Nabika and S. Deki, “Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase,” J. Phys. Chem. B 107(35), 9161–9164 (2003).
[CrossRef]

J. Solid State Chem.

Z. Wu, J. Shi, J. Wang, M. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[CrossRef]

Mater. Res. Bull.

Y. Liu and C. Shi, “Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor,” Mater. Res. Bull. 36(1-2), 109–115 (2001).
[CrossRef]

Nano Lett.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces,” Nano Lett. 10(3), 813–820 (2010).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nat. Photonics

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Status Solidi

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi 2(7), 2841–2844 (2005).
[CrossRef]

Physica B

H. Ryu, B. Singh, and K. Bartwal, “Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+,” Physica B 403(1), 126–130 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Graphical representation of the structure between phosphors and Ag nanoparticles.

Fig. 2
Fig. 2

STEM images of two Ag samples: (a) Ag sample 1 synthesized using a wet-reduction method and (b) commercial Ag sample 2. The inset figures show SEM images of Ag sample 1 and 2, respectively.

Fig. 3
Fig. 3

Extinction spectra of (a) Ag sample 1 synthesized using a wet-reduction method and (b) commercial Ag sample 2 dispersed in an ethanol medium.

Fig. 4
Fig. 4

Emission spectra of phosphor films as a function of the Ag concentration: (a) Ag sample 1 (b) Ag sample 2. The inset figure shows the standard error of the integrated emission intensity.

Fig. 5
Fig. 5

Selectivity of the localized surface plasmon resonance as a function of the integrated emission wavelength of various phosphors; blue, red, green corresponding to emissions of 450 nm, 618 nm, 530 nm, respectively.

Fig. 6
Fig. 6

Numerical analysis of the localized field enhancement under the structure of an Ag particle and emitting dipole, (a) simulation configuration for the FDTD calculation and the near-field distribution around this, (b) an isolated radiating dipole, (c) radius of 30 nm of an Ag particle placed 2 nm from radiating dipole, and (d) the enhanced or quenched electric field intensity.

Metrics