Abstract

We report for the first time that an ultra-thin hybrid metamaterial slab can reflect an incident plane wave in −1st diffraction order, giving rise to anomalous reflection in a “negative” way. The functionality is derived from the hybridized surface resonant states of the slab. The retro-directive reflection is demonstrated numerically for a Gaussian beam at oblique incidence and verified experimentally at microwave frequencies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, Angleterre, 1980).
  2. M. Mansuripur, Classical Optics and its Applications (Cambridge University Press, 2002).
  3. D. Maystre, “Photonic crystal diffraction gratings,” Opt. Express 8(3), 209–216 (2001).
    [CrossRef] [PubMed]
  4. G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
    [CrossRef]
  5. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “Influence of surface termination on negative reflection by photonic crystals,” Opt. Express 15(11), 6605–6611 (2007).
    [CrossRef] [PubMed]
  6. N. Engheta, and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley & Sons., 2006).
  7. D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
    [CrossRef]
  8. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
    [CrossRef] [PubMed]
  9. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
    [CrossRef] [PubMed]
  10. A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
    [CrossRef]
  11. J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
    [CrossRef]
  12. M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [CrossRef]
  13. R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [CrossRef]
  14. The transverse electric (TE) polarized incident wave with the electric field E//x is blind to the air gaps between the metallic strips`, and treats the whole structure as a homogeneous dielectric slab with PEC ground effectively.
  15. P. Rayleigh, “On the Dynamical Theory of Gratings,” R. Soc. London Ser. A 79(532), 399–416 (1907).
    [CrossRef]
  16. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
    [CrossRef]
  17. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
    [CrossRef]
  18. Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
    [CrossRef]
  19. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA, 2000).

2010 (1)

Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
[CrossRef]

2009 (2)

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

2008 (1)

J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
[CrossRef]

2007 (1)

2006 (1)

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

2004 (1)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

2003 (1)

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

2001 (1)

2000 (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
[CrossRef]

1999 (1)

D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

1982 (1)

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

1935 (1)

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

1907 (1)

P. Rayleigh, “On the Dynamical Theory of Gratings,” R. Soc. London Ser. A 79(532), 399–416 (1907).
[CrossRef]

Alexopolous, N. G.

D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
[CrossRef]

Barnes, W.

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

Broas, R. F. J.

D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Brown, J.

J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
[CrossRef]

Brown, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

Busch, K.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Cao, Y.

Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
[CrossRef]

Dardano, P.

Diem, M.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Fu, J.

Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
[CrossRef]

Garcia-Martin, A.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Gosele, U.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Hibbins, A.

J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
[CrossRef]

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
[CrossRef]

Koch, W.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
[CrossRef]

Lawrence, C.

J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

Li, H.

Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
[CrossRef]

Lockyear, M.

J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

Maystre, D.

Meisel, D. C.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Mocella, V.

Moller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
[CrossRef]

Moretti, L.

Murray, W.

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
[CrossRef]

Pereira, S.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Rayleigh, P.

P. Rayleigh, “On the Dynamical Theory of Gratings,” R. Soc. London Ser. A 79(532), 399–416 (1907).
[CrossRef]

Rendina, I.

Sambles, J.

J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
[CrossRef]

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

Schilling, J.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

Sievenpiper, D.

D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Soukoulis, C.

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

Tyler, J.

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

von Freymann, G.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Wedge, S.

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

Wegener, M.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Wehrspohn, R. B.

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

Wei, Z.

Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
[CrossRef]

Wood, R. W.

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Wu, C.

Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
[CrossRef]

Yablonovitch, E.

D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Zhang, L. J.

D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008).
[CrossRef]

J. Opt. A-Pure Appl. Opt (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000).
[CrossRef]

Opt. Express (2)

Photon. Nanostruct.: Fundam. Appl. (1)

Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010).
[CrossRef]

Phys. Rev. (1)

R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

Phys. Rev. B (3)

M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[CrossRef]

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[CrossRef]

Phys. Rev. Lett. (2)

M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004).
[CrossRef] [PubMed]

R. Soc. London Ser. A (1)

P. Rayleigh, “On the Dynamical Theory of Gratings,” R. Soc. London Ser. A 79(532), 399–416 (1907).
[CrossRef]

Other (5)

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA, 2000).

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, Angleterre, 1980).

M. Mansuripur, Classical Optics and its Applications (Cambridge University Press, 2002).

N. Engheta, and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley & Sons., 2006).

The transverse electric (TE) polarized incident wave with the electric field E//x is blind to the air gaps between the metallic strips`, and treats the whole structure as a homogeneous dielectric slab with PEC ground effectively.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic configuration of the hybrid slab. The regions containing perfectly electric conductor (PEC) or dielectric are marked by orange color or blue color. The geometrical parameters are a = 20 mm , b = 6 mm , g = 1 mm , h = 1.6 mm and t = 0.035 mm . The permittivity of dielectric slab is ε r = 2.65 . A transverse magnetic (TM) plane wave is incident in y ^ z ^ plane with an incident angle θ, the magnetic field is along the y axis. (b) The functionality of the hybrid slab can be understood as the result of the coupling of a chain of alternating cavities A and B.

Fig. 2
Fig. 2

Reflectivity spectra of the 0 th (red solid lines) −1st (blue dashed lines) and + 1st(dark yellow short-dashed lines) order of reflected waves for TM polarized incident plane waves with different incident angles θ = 0 ° , 10 ° , 20 ° and 30 ° . The frequencies in white regions [(b)-(d)] confirm that only 0th and −1st reflected waves propagate in the free space with real wave vector component along z axis. The colored arrows in the inset of (a) schematically illustrate the directions of the incidence I0 (black) and the corresponding reflected waves in the 0th order (red), the −1st order (blue), and the + 1st order (dark yellow).

Fig. 3
Fig. 3

(a) Dispersion diagram of surface resonance states on the hybrid slab. Reflectivity of the 0th or -1st reflected diffractive waves matching to the k y 0 or k y < 0 surface resonances on branch B4 and B5 in colored region of reciprocal space are marked with the size of the symbol being proportional the magnitude of the reflectivity (see text for details). The reflectivity is also plotted as a function of incident angles at (b) for f = 7.65GHz, (c) for f = 9.88GHz and (d) for f = 10.88GHz.

Fig. 4
Fig. 4

Negative reflection from the hybrid slab at 7.65GHz with an incident angle at θ = 44.6 ° . FDTD simulations with one-way Gaussian beam incident on (a) a PEC slab, and (b) a hybrid slab. (c) The angular spectra of the measured reflection intensity in far-field. (d) Snapshot of local field patterns inside the rectangle box illustrated in Fig. 4(b). The insets in (a) and (b) illustrate the structure of PEC slab and hybrid slab. The positions of one-way Gaussian beam are indicated by horizontal thin lines in (a) and (b). Black arrows refers to the directions of incident Gaussian beams, while red and blue arrows refer to the directions of specular reflection from PEC slab and that of negative reflection from hybrid slab respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H 1 = m = + [ δ m , 0 e i k m , z 1 ( z h t ) + r m e i k m , z 1 ( z h t ) ] e i ( k y + G m ) y H 3 = m = + { t m e i k m , z 3 ( z h ) + t m e i [ k m , z 3 ( z h ) + φ m ] } e i ( k y + G m ) y ,
H 2 = l g l ( y ) [ a l e i k l , z 2 ( z h t ) + b l e i k l , z 2 ( z h ) ] .

Metrics