Abstract

A diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO4/KTP Raman laser is studied experimentally and theoretically. Rate equations are used to analyze the Q-switched yellow laser by considering the transversal distributions of the intracavity photon density and the inversion population density. An 8.3 W 590 nm laser is obtained with a 125.8 W 808 nm pump power and a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser is 6.57%, much higher than that of the former reported side-pumped yellow laser. The output powers with respect to the incident pump power are in agreement with the theoretical results on the whole.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [CrossRef]
  2. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [CrossRef]
  3. Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett. 29(18), 2172–2174 (2004).
    [CrossRef] [PubMed]
  4. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [CrossRef]
  5. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
    [CrossRef]
  6. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
    [CrossRef] [PubMed]
  7. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, W. D. Chen, Y. D. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO(4)/Nd:YVO(4) composite,” Opt. Lett. 34(18), 2763–2765 (2009).
    [CrossRef] [PubMed]
  8. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, H. Y. Shen, Y. Q. Zheng, L. X. Huang, and Z. Q. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express 17(24), 21544–21550 (2009).
    [CrossRef] [PubMed]
  9. P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystals,” Opt. Commun. 177(1-6), 397 (2000).
    [CrossRef]
  10. P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
    [CrossRef]
  11. P. Cerný and H. Jelínková, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO(4) crystal,” Opt. Lett. 27(5), 360-362 (2002).
    [CrossRef]
  12. P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
    [CrossRef]
  13. Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
    [CrossRef]
  14. S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
    [CrossRef] [PubMed]
  15. L. Fan, Y. X. Fan, Y. Q. Li, H. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
    [CrossRef] [PubMed]
  16. A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuouswave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
    [CrossRef] [PubMed]
  17. W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
    [CrossRef]
  18. J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
    [CrossRef]
  19. R. G. Smith, “Theory of intracavity optical second harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
    [CrossRef]
  20. X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).
  21. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
    [CrossRef]
  22. A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).
  23. S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
    [CrossRef]
  24. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
    [CrossRef]
  25. J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70 (1971).
    [CrossRef]
  26. W. Koechner, Solid-state laser engineering, Springer Series in Optical Sciences, Springer, Berlin, 1999, fifth revised and updated edition.

2010

2009

2008

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
[CrossRef] [PubMed]

2007

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[CrossRef] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

2006

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

2005

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
[CrossRef]

2004

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett. 29(18), 2172–2174 (2004).
[CrossRef] [PubMed]

2003

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

2002

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

P. Cerný and H. Jelínková, “Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO(4) crystal,” Opt. Lett. 27(5), 360-362 (2002).
[CrossRef]

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

2001

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

2000

P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystals,” Opt. Commun. 177(1-6), 397 (2000).
[CrossRef]

1971

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70 (1971).
[CrossRef]

1970

R. G. Smith, “Theory of intracavity optical second harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

Apanasevich, P. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Basiev, T. T.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystals,” Opt. Commun. 177(1-6), 397 (2000).
[CrossRef]

Batay, L. E.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Boughton, R. I.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Cerny, P.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystals,” Opt. Commun. 177(1-6), 397 (2000).
[CrossRef]

Cerný, P.

Chang, J.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Chen, W.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

Chen, W. D.

Chen, Y. F.

Chen, Z. Q.

Cheng, X.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Cong, Z. H.

Danailov, M. B.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
[CrossRef] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Demidovich, A. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Ding, S. H.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Duan, Y. M.

Falk, J.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70 (1971).
[CrossRef]

Fan, J. D.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Fan, L.

Fan, S. Z.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Fan, Y. X.

Ge, W. W.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Grabtchikov, A. S.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Hait, V. L.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Hitz, C. B.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70 (1971).
[CrossRef]

Hu, X.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Huang, C. H.

Huang, L. X.

Huang, Y. D.

Inagawa, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

Jabczynski, J.

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

Jelinkova, H.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystals,” Opt. Commun. 177(1-6), 397 (2000).
[CrossRef]

Jelínková, H.

Jia, P.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Jiang, M.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Jiang, M. H.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
[CrossRef]

Kiefer, W.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Kopczynski, K.

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

Kuzmin, A. N.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Kuzmin, O. V.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Lee, A. J.

Li, H.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Li, J. F.

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Li, P.

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Li, S. T.

S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[CrossRef] [PubMed]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Li, Y. Q.

Lisinetskii, V. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Liu, J. H.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Liu, Z. J.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Omatsu, T.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

Orlovich, V. A.

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Pask, H. M.

A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuouswave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
[CrossRef] [PubMed]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

Piper, J. A.

A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuouswave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
[CrossRef] [PubMed]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

Ran, D. G.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Ren, C.

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Shen, H. Y.

Smith, R. G.

R. G. Smith, “Theory of intracavity optical second harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

Spence, D. J.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Su, F. F.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Su, K. W.

Sulc, J.

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

Sun, S. Q.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Takeuchi, N.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

Tateda, M.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

Usuki, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

Wang, H. T.

Wang, J.

Wang, J. Y.

Wang, Q.

Wang, Q. P.

S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[CrossRef] [PubMed]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Wang, Y. J.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Wei, Y.

Xia, H. R.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Xu, H.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Xu, X.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Yarborough, J. M.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70 (1971).
[CrossRef]

Ye, N.

Zendzian, W.

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

Zhang, G.

Zhang, H.

Zhang, H. J.

A. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuouswave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
[CrossRef] [PubMed]

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
[CrossRef]

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Zhang, S. S.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

Zhang, X. L.

Zhang, X. Y.

S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. Zhang, and J. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett. 32(20), 2951–2953 (2007).
[CrossRef] [PubMed]

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Zhao, S. Z.

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Zheng, J. A.

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Zheng, Y. Q.

Zhu, H. Y.

Zverev, P. G.

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystals,” Opt. Commun. 177(1-6), 397 (2000).
[CrossRef]

Appl. Phys. B

A. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B 76, 509 (2003).

Appl. Phys. Lett.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70 (1971).
[CrossRef]

IEEE J. Quantum Electron.

S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927- 933 (2006).
[CrossRef]

R. G. Smith, “Theory of intracavity optical second harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

P. Cerny, H. Jelinkova, T. T. Basiev, and P. G. Zverev, “Highly efficient picosecond Raman generators based on the BaWO4 crystal in the near infrared, visible, and ultraviolet,” IEEE J. Quantum Electron. 38(11), 1471–1478 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

IEEE Sel. Top. Quantum Electron.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

J. Appl. Phys.

J. D. Fan, H. J. Zhang, Y. J. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[CrossRef]

J. Cryst. Growth

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Opt. Commun.

P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, “Efficient Raman shifting of picosecond pulses using BaWO4 crystals,” Opt. Commun. 177(1-6), 397 (2000).
[CrossRef]

P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, and K. Kopczynski, “Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal,” Opt. Commun. 209(4-6), 403–409 (2002).
[CrossRef]

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd:PbWO4 Raman laser,” Opt. Commun. 194(4-6), 401–407 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Quantum Electron.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Sci. China Ser. F

X. Y. Zhang, Q. P. Wang, S. Z. Zhao, J. F. Li, P. Li, C. Ren, and J. A. Zheng, “Theory of intracavity-frequency-doubled solid state four level lasers,” Sci. China Ser. F 45, 130 (2002).

Other

W. Koechner, Solid-state laser engineering, Springer Series in Optical Sciences, Springer, Berlin, 1999, fifth revised and updated edition.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement of the side-pumped actively Q-switched intracavity KTP frequency doubled Nd:YAG/BaWO4 Raman laser.

Fig. 2
Fig. 2

Average output power of the 590 nm laser with respect to the pump power at PRFs of 10, 15 and 20 kHz. The solid symbols are the experimental results, the lines are theoretical results.

Fig. 3
Fig. 3

The pulse width of the 590 nm laser with respect to the pump power at PRFs of 10, 15 and 20 kHz.

Fig. 4
Fig. 4

The oscilloscope trace for the 1180 nm and 590 nm laser pulses with a 125.8 W pump power and a 15 kHz PRF.

Tables (1)

Tables Icon

Table 1 Parameters for the theoretical calculation

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ϕ L L ( r , t ) = ϕ L L ( 0 , t ) exp ( 2 r 2 ω L L 2 )
ϕ L R ( r , t ) = ϕ L R ( 0 , t ) exp ( 2 r 2 ω L R 2 )
ϕ R R ( r , t ) = ϕ R R ( 0 , t ) exp ( 2 r 2 ω R R 2 )
ϕ R K ( r , t ) = ϕ R K ( 0 , t ) exp ( 2 r 2 ω R K 2 )
ω L L 2 ϕ L L ( 0 , t ) = ω L R 2 ϕ L R ( 0 , t )
ω R R 2 ϕ R R ( 0 , t ) = ω R K 2 ϕ R K ( 0 , t )
n ( r , 0 ) = n ( 0 , 0 ) exp ( 2 r 2 ω P 2 )
P S H = ρ π η [ c h ν R ϕ R R ( 0 , t ) ] 2 ω R R 4 16 ω R K 2
η = ω 2 d e f f 2 l K 2 c 3 ε 0 n o 2 ω n o ω n e ω sin 2 ( l K Δ k / 2 ) ( l K Δ k / 2 ) 2
P S H = h ν R l C     0     d ϕ R R ( r , t ) d t | S H G 2 π r d r
    0     d ϕ R R ( r , t ) d t | S H G 2 π r d r = ρ π η h ν R [ c ϕ R R ( 0 , t ) ] 2 ω R R 4 16 ω R K 2 l C
0 d ϕ L L ( r , t ) d t 2 π r d r = 1 t r 0 [ 2 σ n ( r , t ) ϕ L L ( r , t ) l 2 g h ν R c l R ϕ L R ( r , t ) ϕ R R ( r , t ) ] 2 π r d r
1 t L 0 ϕ L L ( r , t ) 2 π r d r
+ k s p 0 ϕ L R ( r , t ) 2 π r d r     0     d φ R R ( r , t ) d t | S H G 2 π r d r
d n ( r , t ) d t = γ σ c ϕ L L ( r , t ) n ( r , t ) n ( r , t ) τ
n ( r , t ) = n ( 0 , 0 ) exp ( 2 r 2 ω P 2 ) exp [ γ σ c exp ( 2 r 2 ω L L 2 ) 0 t ϕ L L ( 0 , t ) d t t τ ]
d ϕ L L ( 0 , t ) d t = 4 σ l ω L L 2 t r ϕ L L ( 0 , t ) n ( 0 , t ) 0 { exp [ 2 r 2 ( 1 ω P 2 + 1 ω L L 2 ) ] exp [ γ σ c exp ( 2 r 2 ω L L 2 ) 0 t ϕ L L ( 0 , t ) d t t τ ] } 2 π r d r
2 g h ν R c l R t r ω R R 2 ω L R 2 + ω R R 2 ϕ L L ( 0 , t ) ϕ R R ( 0 , t ) ϕ L L ( 0 , t ) t L
d ϕ R R ( 0 , t ) d t = 2 g h ν R c l R ϕ L L ( 0 , t ) ϕ R R ( 0 , t ) t r ω L L 2 ω R R 2 ω L R 2 ω L L 2 + ω L R 2 ϕ R R ( 0 , t ) t R
+ k s p ω L L 2 ω R R 2 ϕ L L ( 0 , t ) ρ η h ν R c 2 8 l C ω R R 2 ω R K 2 ϕ R R 2 ( 0 , t )
ρ = 1 + M 2 + 2 M cos θ
ρ = 1 2 π 0 2 π ( 1 + M 2 + 2 M cos θ ) d θ = 1 + M 2
E S H 2 = ( 1 R Y ) 0 h ν R l C     0     d φ R R ( r , t ) d t | S H G 2 π r d r d t
= ( 1 + M 2 ) ( 1 R Y ) π η ( c h ν R ) 2 16 ω R R 4 ω R K 2 0 ϕ R R 2 ( 0 , t ) d t
P S H 2 = f P E S H 2 = f P ( 1 + M 2 ) ( 1 R Y ) π η ( c h ν R ) 2 16 ω R R 4 ω R K 2 0 ϕ R R 2 ( 0 , t ) d t
1 f = 1 2 d n d T P h e a t K C A

Metrics