Abstract

We experimentally characterized a birefringent microstructured polymer fiber of specific construction, which allows for single mode propagation in two cores separated by a pair of large holes. The fiber exhibits high birefringence in each of the cores as well as relatively weak coupling between the cores. Spectral dependence of the group and the phase modal birefringence was measured using an interferometric method. We have also measured the sensing characteristics of the fiber such as polarimetric sensitivity to hydrostatic pressure, strain and temperature. Moreover, we have studied the effect of hydrostatic pressure and strain on coupling between the cores.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [CrossRef]
  3. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [CrossRef]
  4. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarymetic sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4-6), 339–348 (2004).
    [CrossRef]
  5. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006).
    [CrossRef] [PubMed]
  6. O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
    [CrossRef]
  7. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
    [CrossRef]
  8. S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
    [CrossRef]
  9. M. Silva-López, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Opt. Lett. 30(23), 3129–3131 (2005).
    [CrossRef] [PubMed]
  10. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
    [CrossRef]
  11. X. H. Yang and L. L. Wang, “Fluorescence pH probe based on microstructured polymer optical fiber,” Opt. Express 15(25), 16478–16483 (2007).
    [CrossRef] [PubMed]
  12. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
    [CrossRef]
  13. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
    [CrossRef] [PubMed]
  14. H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Strain and temperature sensor using a combination of polymer,and silica fibre bragg gratings,” Opt. Commun. 219(1-6), 139–142 (2003).
    [CrossRef]
  15. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
    [CrossRef] [PubMed]
  16. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
    [CrossRef]
  17. A. Argyros, I. Bassett, M. van Eijkelenborg, M. Large, J. Zagari, N. A. Nicorovici, R. McPhedran, and C. M. de Sterke, “Ring structures in microstructured polymer optical fibres,” Opt. Express 9(13), 813–820 (2001).
    [CrossRef] [PubMed]
  18. W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
    [CrossRef]
  19. X. Yu, M. A. van Eijkelenborg, and P. Shum, “Determination of the wavelength dependence of the coupling effect in twin-core microstructured polymer optical fibers,” Opt. Eng. 46(7), 075002 (2007).
    [CrossRef]
  20. Y. Zhang, L. Ren, K. Li, H. Wang, W. Zhao, L. Wang, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg, “Guiding mode in elliptical core microstructured polymer optical fiber,” Chin. Opt. Lett. 5, 194–196 (2007).
  21. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
    [CrossRef] [PubMed]
  22. A. Argyros, M. A. van Eijkelenborg, M. C. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31(2), 172–174 (2006).
    [CrossRef] [PubMed]
  23. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [CrossRef]
  24. M. A. van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Opt. Commun. 236(1-3), 75–78 (2004).
    [CrossRef]
  25. L. Zhang, C. Yang, C. Yu, T. Luo, and A. E. Willner, “PCF-based polarization splitters with simplified structures,” J. Lightwave Technol. 23(11), 3558–3565 (2005).
    [CrossRef]
  26. P. Hlubina, T. Martynkien, and W. Urbańczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express 11(22), 2793–2798 (2003).
    [PubMed]
  27. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43(24), 4739–4744 (2004).
    [CrossRef] [PubMed]
  28. M. Szpulak, T. Martynkien, and W. Urbańczyk, “Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure,”in Proceedings of 2006 8th International Conference on Transparent Optical Networks with 5th European Symposium on Photonic Crystals (Nottingham, UK, June 18–22, 2006) Vol. 4 / [Ed. M. Marciniak]. Piscataway, NJ: IEEE, cop. 2006, pp. 174–177.
  29. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
    [CrossRef]
  30. R. M. Waxler, D. Horowitz, and A. Feldman, “Optical and physical parameters of Plexiglas 55 and Lexan,” Appl. Opt. 18(1), 101–104 (1979).
    [CrossRef] [PubMed]
  31. S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
    [CrossRef]
  32. W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, “Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology,” Polym. Test. 24(7), 900–908 (2005).
    [CrossRef]

2008 (2)

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

2007 (5)

2006 (2)

2005 (4)

2004 (7)

M. A. van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Opt. Commun. 236(1-3), 75–78 (2004).
[CrossRef]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarymetic sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4-6), 339–348 (2004).
[CrossRef]

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
[CrossRef] [PubMed]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt. 43(24), 4739–4744 (2004).
[CrossRef] [PubMed]

2003 (4)

P. Hlubina, T. Martynkien, and W. Urbańczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express 11(22), 2793–2798 (2003).
[PubMed]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Strain and temperature sensor using a combination of polymer,and silica fibre bragg gratings,” Opt. Commun. 219(1-6), 139–142 (2003).
[CrossRef]

2001 (3)

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

1990 (1)

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

1979 (1)

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Amano, T.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Araujo, F. M.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Argyros, A.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Barretto, E. C. S.

Barton, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

Barton, J. S.

Bassett, I.

Bassett, I. M.

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Bennion, I.

Besley, J. A.

M. A. van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Opt. Commun. 236(1-3), 75–78 (2004).
[CrossRef]

Blake, J. N.

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

Brito Cruz, C. H.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Carroll, K. E.

Chesini, G.

Chu, P. L.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Strain and temperature sensor using a combination of polymer,and silica fibre bragg gratings,” Opt. Commun. 219(1-6), 139–142 (2003).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Cordeiro, C. M. B.

Cox, F.

de Sterke, C. M.

Dobb, H.

Feldman, A.

Fellew, M.

Fender, A.

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Fleming, S.

Franco, M. A. R.

Frazão, O.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Hassan, T.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[CrossRef]

Henry, G.

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
[CrossRef] [PubMed]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

Hlubina, P.

Horowitz, D.

Huang, S. Y.

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

Issa, N. A.

Jin, G. C.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, “Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology,” Polym. Test. 24(7), 900–908 (2005).
[CrossRef]

Jones, J. D. C.

Kalli, K.

Kiesel, S.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[CrossRef]

Kim, B. Y.

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

Kowalsky, M.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[CrossRef]

Large, M.

Large, M. C.

Large, M. C. J.

Y. Zhang, L. Ren, K. Li, H. Wang, W. Zhao, L. Wang, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg, “Guiding mode in elliptical core microstructured polymer optical fiber,” Chin. Opt. Lett. 5, 194–196 (2007).

K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
[CrossRef] [PubMed]

C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006).
[CrossRef] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Li, K.

Liu, H. B.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Strain and temperature sensor using a combination of polymer,and silica fibre bragg gratings,” Opt. Commun. 219(1-6), 139–142 (2003).
[CrossRef]

Liu, H. Y.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Strain and temperature sensor using a combination of polymer,and silica fibre bragg gratings,” Opt. Commun. 219(1-6), 139–142 (2003).
[CrossRef]

Luo, T.

Lwin, R.

MacPherson, W. N.

Manos, S.

Martynkien, T.

McPhedran, R.

McPhedran, R. C.

Miao, R.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Morisawa, M.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Muto, S.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Nicorovici, N. A.

Nicorovici, N. A. P.

Padden, W.

M. A. van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Opt. Commun. 236(1-3), 75–78 (2004).
[CrossRef]

Padden, W. E. P.

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

Peng, G. D.

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Strain and temperature sensor using a combination of polymer,and silica fibre bragg gratings,” Opt. Commun. 219(1-6), 139–142 (2003).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Peters, K.

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[CrossRef]

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Ren, L.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Santos, J. L.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Shum, P.

X. Yu, M. A. van Eijkelenborg, and P. Shum, “Determination of the wavelength dependence of the coupling effect in twin-core microstructured polymer optical fibers,” Opt. Eng. 46(7), 075002 (2007).
[CrossRef]

Silva-López, M.

Statkiewicz, G.

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarymetic sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4-6), 339–348 (2004).
[CrossRef]

Suzuki, O.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Szpulak, M.

Urbanczyk, W.

van Eijkelenborg, M.

van Eijkelenborg, M. A.

X. Yu, M. A. van Eijkelenborg, and P. Shum, “Determination of the wavelength dependence of the coupling effect in twin-core microstructured polymer optical fibers,” Opt. Eng. 46(7), 075002 (2007).
[CrossRef]

Y. Zhang, L. Ren, K. Li, H. Wang, W. Zhao, L. Wang, R. Miao, M. C. J. Large, and M. A. van Eijkelenborg, “Guiding mode in elliptical core microstructured polymer optical fiber,” Chin. Opt. Lett. 5, 194–196 (2007).

A. Argyros, M. A. van Eijkelenborg, M. C. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31(2), 172–174 (2006).
[CrossRef] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

M. A. van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Opt. Commun. 236(1-3), 75–78 (2004).
[CrossRef]

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Wang, H.

Wang, L.

Wang, L. L.

Waxler, R. M.

Webb, D. J.

Willner, A. E.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Xu, W.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, “Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology,” Polym. Test. 24(7), 900–908 (2005).
[CrossRef]

Yang, C.

Yang, X. H.

Yao, X. F.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, “Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology,” Polym. Test. 24(7), 900–908 (2005).
[CrossRef]

Yeh, H. Y.

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, “Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology,” Polym. Test. 24(7), 900–908 (2005).
[CrossRef]

Yu, C.

Yu, X.

X. Yu, M. A. van Eijkelenborg, and P. Shum, “Determination of the wavelength dependence of the coupling effect in twin-core microstructured polymer optical fibers,” Opt. Eng. 46(7), 075002 (2007).
[CrossRef]

Zagari, J.

Zhang, C.

Zhang, L.

Zhang, Y.

Zhao, D.

Zhao, W.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett. 84(10), 1689–1691 (2004).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (2)

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Large deformation in-fiber polymer optical fiber sensor,” IEEE Photon. Technol. Lett. 20(6), 416–418 (2008).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

J. Appl. Phys. (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

J. Lightwave Technol. (2)

S. Y. Huang, J. N. Blake, and B. Y. Kim, “Perturbation effects on mode propagation in highly elliptical core two-mode fibers,” J. Lightwave Technol. 8(1), 23–33 (1990).
[CrossRef]

L. Zhang, C. Yang, C. Yu, T. Luo, and A. E. Willner, “PCF-based polarization splitters with simplified structures,” J. Lightwave Technol. 23(11), 3558–3565 (2005).
[CrossRef]

Laser Photonics Rev. (1)

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Meas. Sci. Technol. (4)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol. 18(10), 3144–3154 (2007).
[CrossRef]

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fibre sensor for real-time humidity monitoring,” Meas. Sci. Technol. 14(6), 746–750 (2003).
[CrossRef]

Opt. Commun. (3)

H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, “Strain and temperature sensor using a combination of polymer,and silica fibre bragg gratings,” Opt. Commun. 219(1-6), 139–142 (2003).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarymetic sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241(4-6), 339–348 (2004).
[CrossRef]

M. A. van Eijkelenborg, W. Padden, and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Opt. Commun. 236(1-3), 75–78 (2004).
[CrossRef]

Opt. Eng. (1)

X. Yu, M. A. van Eijkelenborg, and P. Shum, “Determination of the wavelength dependence of the coupling effect in twin-core microstructured polymer optical fibers,” Opt. Eng. 46(7), 075002 (2007).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (1)

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

Opt. Lett. (4)

Polym. Test. (1)

W. Xu, X. F. Yao, H. Y. Yeh, and G. C. Jin, “Fracture investigation of PMMA specimen using coherent gradient sensing (CGS) technology,” Polym. Test. 24(7), 900–908 (2005).
[CrossRef]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (1)

M. Szpulak, T. Martynkien, and W. Urbańczyk, “Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure,”in Proceedings of 2006 8th International Conference on Transparent Optical Networks with 5th European Symposium on Photonic Crystals (Nottingham, UK, June 18–22, 2006) Vol. 4 / [Ed. M. Marciniak]. Piscataway, NJ: IEEE, cop. 2006, pp. 174–177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

SEM image of the investigated mPOF.

Fig. 2
Fig. 2

Normalized maps of electric field distributions in all supermodes supported by the fiber (a) and cross-sections of field distributions in respective supermodes (b-c), λ = 560 nm.

Fig. 3
Fig. 3

Spectrograms registered at the output of the core 1 arising because of interference between the supermodes Se x, So x (a) and Se y, So y (b). The spectrograms were registered for straight fiber of length L = 0.362 m, core 1 was excited at the fiber input with x- and y-polarized light, respectively.

Fig. 4
Fig. 4

Setup for measurements of birefringence and polarimetric sensitivity to different measurands in each core individually, P-polarizer, A-analyzer, L-microscope objective.

Fig. 5
Fig. 5

Spectral fringes arising due to interference of orthogonally polarized supermodes at the output of core 1 (a) and core 2 (b) when core 1 is excited. The spectrograms were registered for straight fiber of length L = 0.258 m.

Fig. 6
Fig. 6

Results of measurements of phase modal birefringence (a) and group modal birefringence (b) in the two cores.

Fig. 7
Fig. 7

Displacement of spectral interference fringes induced by increasing hydrostatic pressure. Length of the fiber exposed to pressure changes is LP = 0.362 m, total fiber length is L = 0.66 m, spectrogram registered for core 1.

Fig. 8
Fig. 8

Phase shift between polarization supermodes (KP) and supermodes of y-polarization ( K P int y ) induced by increasing and decreasing hydrostatic pressure. Measurements were carried out for core 1, λ = 710 nm. Length of the fiber exposed to pressure changes is LP = 0.362 m, total fiber length is L = 0.66 m.

Fig. 9
Fig. 9

Spectral dependence of the polarimetric sensitivity to hydrostatic pressure Kp (a) and sensitivity of modal birefringence to hydrostatic pressure dB/dp (b)

Fig. 10
Fig. 10

Phase shift between polarization supermodes (Kε) and supermodes of y-polarization ( K ε int y ) induced by increasing and decreasing strain, λ = 710 nm. Length of the fiber subjected to elongation is Lstrain = 0.662 m, total fiber length is L = 0.78 m, measurement carried out for core 1.

Fig. 11
Fig. 11

Phase shift between polarization supermodes induced by increasing and decreasing temperature measured for annealed fiber at λ = 710 nm. The length of the fiber subjected to temperature changes is LT = 0.22 m, total fiber length is L = 0.78 m, measurement carried out for core 1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L B = λ / B .
B ( λ ) = Δ ϕ ( λ ) λ 2 π L .
G ( λ ) = λ 2 2 π L d ( Δ ϕ ( λ ) ) d λ .
K X = 1 L X d ( ϕ x ϕ y ) d X = 2 π λ [ B X + B L X L X X ] .
K X = 2 π L X d d X ( λ min ( X ) Δ λ ) ,
d B d p =     λ K X 2 π .

Metrics