Abstract

We propose two techniques to suppress intrinsic sidelobe spectra in all-fiber acousto-optic tunable filter using torsional acoustic wave. The techniques are based on either double-pass filter configuration or axial tailoring of mode coupling strength along an acousto-optic interaction region in a highly birefringent optical fiber. The sidelobe peak in the filter spectrum is experimentally suppressed from −8.3dB to −16.4dB by employing double-pass configuration. Axial modulation of acousto-optic coupling strength is proposed using axial variation of the fiber diameter, and the simulation results show that the maximum side peak of −9.3dB can be reduced to −22.2dB. We also discuss the possibility of further spectral shaping of the filter based on the axial tailoring of acousto-optic coupling strength.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
    [CrossRef]
  2. K. J. Lee, D.-I. Yeom, and B. Y. Kim, “Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter,” Opt. Express 15(6), 2987–2992 (2007).
    [CrossRef] [PubMed]
  3. M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
    [CrossRef]
  4. K. J. Lee, H. C. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Opt. Express 15(19), 12362–12367 (2007).
    [CrossRef] [PubMed]
  5. K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Opt. Express 16(7), 4631–4638 (2008).
    [CrossRef] [PubMed]
  6. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact,” Opt. Express 17(8), 6096–6100 (2009).
    [CrossRef] [PubMed]
  7. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
    [CrossRef]
  8. K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
    [CrossRef] [PubMed]
  9. H. C. Park, B. Y. Kim, and H. S. Park, “Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control,” Opt. Lett. 30(23), 3126–3128 (2005).
    [CrossRef] [PubMed]
  10. D. O. Culverhouse, S. H. Yun, D. J. Richardson, T. A. Birks, S. G. Farwell, and P. S. J. Russell, “Low-loss all-fiber acousto-optic tunable filter,” Opt. Lett. 22(2), 96–98 (1997).
    [CrossRef] [PubMed]
  11. D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
    [CrossRef]
  12. A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
    [CrossRef]
  13. D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
    [CrossRef]
  14. H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13(1), 112–118 (1996).
    [CrossRef]
  15. B. Langli and K. Bløtekjær, “Effect of acoustic birefringence on acoustooptic interaction in birefringent two-mode optical fibers,” J. Lightwave Technol. 21(2), 528–535 (2003).
    [CrossRef]

2010

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[CrossRef]

K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2005

2003

2002

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

1997

1996

1992

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

1991

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Berwick, M.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Birks, T. A.

Bløtekjær, K.

Burdge, G. L.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

Culverhouse, D. O.

Dimmick, T. E.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

Engan, H. E.

Farwell, S. G.

Hong, K. S.

Hwang, I.-K.

Jackson, D. A.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Johnson, J. J.

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

Kar-Roy, A.

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

Kim, B. Y.

K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
[CrossRef] [PubMed]

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[CrossRef]

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact,” Opt. Express 17(8), 6096–6100 (2009).
[CrossRef] [PubMed]

K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Opt. Express 16(7), 4631–4638 (2008).
[CrossRef] [PubMed]

K. J. Lee, D.-I. Yeom, and B. Y. Kim, “Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter,” Opt. Express 15(6), 2987–2992 (2007).
[CrossRef] [PubMed]

K. J. Lee, H. C. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Opt. Express 15(19), 12362–12367 (2007).
[CrossRef] [PubMed]

H. C. Park, B. Y. Kim, and H. S. Park, “Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control,” Opt. Lett. 30(23), 3126–3128 (2005).
[CrossRef] [PubMed]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
[CrossRef]

Kim, H. S.

Kwang, I. K.

Langli, B.

Lee, K. J.

Nam, K. H.

Pannell, C. N.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Park, H. C.

Park, H. S.

Richardson, D. J.

Russell, P. S. J.

Russell, P. St. J.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Satorius, D. A.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

Smith, D. A.

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

Tsai, C. S.

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

Yeom, D.-I.

Yun, S. H.

Appl. Phys. Lett.

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

Electron. Lett.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[CrossRef]

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a proposed all-fiber torsional mode AOTF with the double-pass configuration. The inset shows the cross-section of the elliptical core HB fiber used in this experiment. ASE: amplified spontaneous emission source, OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

Experimental and theoretical transmission spectra of the all-fiber torsional mode AOTF (a) with the single-pass and (b) with the double-pass configurations at the applied acoustic frequency of 2.748 MHz. (c) Center wavelength of the filter plotted as a function of the applied acoustic frequency.

Fig. 3
Fig. 3

(a) Variation of the fiber diameter along the AO interaction region. m: normalized fiber diameter at the center of the AO interaction region, L: AO interaction length for complete mode coupling. (b) Axial variation of the AO coupling coefficient plotted as a function of the fiber length for each m-value.

Fig. 4
Fig. 4

(a) Spectral response of the all-fiber torsional mode AOTF calculated for each m-value, and (b) the maximum side peak in the filter spectrum plotted as a function of the m-value.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d ( z ) d 0 = 4 L 2 ( 1 m ) z ( z L ) + 1.
κ ( z ) = κ 0 [ d ( z ) d 0 ] 2 ,
d A x ( z ) d z = i κ ( z ) A y ( z ) e i β z ,
d A y ( z ) d z = i κ ( z ) A x ( z ) e i β z .
β 2 π ( 1 L B ( λ ) 1 Λ ) ,

Metrics