Abstract

We propose two techniques to suppress intrinsic sidelobe spectra in all-fiber acousto-optic tunable filter using torsional acoustic wave. The techniques are based on either double-pass filter configuration or axial tailoring of mode coupling strength along an acousto-optic interaction region in a highly birefringent optical fiber. The sidelobe peak in the filter spectrum is experimentally suppressed from −8.3dB to −16.4dB by employing double-pass configuration. Axial modulation of acousto-optic coupling strength is proposed using axial variation of the fiber diameter, and the simulation results show that the maximum side peak of −9.3dB can be reduced to −22.2dB. We also discuss the possibility of further spectral shaping of the filter based on the axial tailoring of acousto-optic coupling strength.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
    [CrossRef]
  2. K. J. Lee, D.-I. Yeom, and B. Y. Kim, “Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter,” Opt. Express 15(6), 2987–2992 (2007).
    [CrossRef] [PubMed]
  3. M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
    [CrossRef]
  4. K. J. Lee, H. C. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Opt. Express 15(19), 12362–12367 (2007).
    [CrossRef] [PubMed]
  5. K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Opt. Express 16(7), 4631–4638 (2008).
    [CrossRef] [PubMed]
  6. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact,” Opt. Express 17(8), 6096–6100 (2009).
    [CrossRef] [PubMed]
  7. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
    [CrossRef]
  8. K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
    [CrossRef] [PubMed]
  9. H. C. Park, B. Y. Kim, and H. S. Park, “Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control,” Opt. Lett. 30(23), 3126–3128 (2005).
    [CrossRef] [PubMed]
  10. D. O. Culverhouse, S. H. Yun, D. J. Richardson, T. A. Birks, S. G. Farwell, and P. S. J. Russell, “Low-loss all-fiber acousto-optic tunable filter,” Opt. Lett. 22(2), 96–98 (1997).
    [CrossRef] [PubMed]
  11. D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
    [CrossRef]
  12. A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
    [CrossRef]
  13. D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
    [CrossRef]
  14. H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13(1), 112–118 (1996).
    [CrossRef]
  15. B. Langli and K. Bløtekjær, “Effect of acoustic birefringence on acoustooptic interaction in birefringent two-mode optical fibers,” J. Lightwave Technol. 21(2), 528–535 (2003).
    [CrossRef]

2010 (2)

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[CrossRef]

K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

2005 (1)

2003 (1)

2002 (1)

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

1997 (2)

1996 (1)

1992 (2)

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

1991 (1)

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Berwick, M.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Birks, T. A.

Bløtekjær, K.

Burdge, G. L.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

Culverhouse, D. O.

Dimmick, T. E.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

Engan, H. E.

Farwell, S. G.

Hong, K. S.

Hwang, I.-K.

Jackson, D. A.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Johnson, J. J.

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

Kar-Roy, A.

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

Kim, B. Y.

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[CrossRef]

K. J. Lee, I.-K. Hwang, H. C. Park, K. H. Nam, and B. Y. Kim, “Analyses of unintentional intensity modulation in all-fiber acousto-optic tunable filters,” Opt. Express 18(5), 3985–3992 (2010).
[CrossRef] [PubMed]

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact,” Opt. Express 17(8), 6096–6100 (2009).
[CrossRef] [PubMed]

K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Opt. Express 16(7), 4631–4638 (2008).
[CrossRef] [PubMed]

K. J. Lee, H. C. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Opt. Express 15(19), 12362–12367 (2007).
[CrossRef] [PubMed]

K. J. Lee, D.-I. Yeom, and B. Y. Kim, “Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter,” Opt. Express 15(6), 2987–2992 (2007).
[CrossRef] [PubMed]

H. C. Park, B. Y. Kim, and H. S. Park, “Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control,” Opt. Lett. 30(23), 3126–3128 (2005).
[CrossRef] [PubMed]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
[CrossRef]

Kim, H. S.

Kwang, I. K.

Langli, B.

Lee, K. J.

Nam, K. H.

Pannell, C. N.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Park, H. C.

Park, H. S.

Richardson, D. J.

Russell, P. S. J.

Russell, P. St. J.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Satorius, D. A.

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

Smith, D. A.

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

Tsai, C. S.

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

Yeom, D.-I.

Yun, S. H.

Appl. Phys. Lett. (1)

D. A. Smith and J. J. Johnson, “Sidelobe suppression in an acousto-optic filter with a raised-cosine interaction strength,” Appl. Phys. Lett. 61(9), 1025–1027 (1992).
[CrossRef]

Electron. Lett. (1)

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Polarization independent all-fiber acousto-optic tunable filter using torsional acoustic wave,” IEEE Photon. Technol. Lett. 22(8), 523–525 (2010).
[CrossRef]

D. A. Satorius, T. E. Dimmick, and G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14(9), 1324–1326 (2002).
[CrossRef]

A. Kar-Roy and C. S. Tsai, “Low-sidelobe weighted-coupled integrated acoustooptic tunable filter using focused surface acoustic waves,” IEEE Photon. Technol. Lett. 4(10), 1132–1135 (1992).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a proposed all-fiber torsional mode AOTF with the double-pass configuration. The inset shows the cross-section of the elliptical core HB fiber used in this experiment. ASE: amplified spontaneous emission source, OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

Experimental and theoretical transmission spectra of the all-fiber torsional mode AOTF (a) with the single-pass and (b) with the double-pass configurations at the applied acoustic frequency of 2.748 MHz. (c) Center wavelength of the filter plotted as a function of the applied acoustic frequency.

Fig. 3
Fig. 3

(a) Variation of the fiber diameter along the AO interaction region. m: normalized fiber diameter at the center of the AO interaction region, L: AO interaction length for complete mode coupling. (b) Axial variation of the AO coupling coefficient plotted as a function of the fiber length for each m-value.

Fig. 4
Fig. 4

(a) Spectral response of the all-fiber torsional mode AOTF calculated for each m-value, and (b) the maximum side peak in the filter spectrum plotted as a function of the m-value.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d ( z ) d 0 = 4 L 2 ( 1 m ) z ( z L ) + 1.
κ ( z ) = κ 0 [ d ( z ) d 0 ] 2 ,
d A x ( z ) d z = i κ ( z ) A y ( z ) e i β z ,
d A y ( z ) d z = i κ ( z ) A x ( z ) e i β z .
β 2 π ( 1 L B ( λ ) 1 Λ ) ,

Metrics