Abstract

We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than ± 1.8% in the given four hours.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Ding, R. Wang, H. Zhang, W. Q. Wen, L. Huang, P. Wang, J. Q. Yao, X. Y. Yu, and Z. Li, “Generation of 3.5W high efficiency blue-violet laser by intracavity frequency-doubling of an all-solid-state tunable Ti:sapphire laser,” Opt. Express 16(7), 4582–4587 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-7-4582 .
    [CrossRef]
  2. L. S. Cruz and F. C. Cruz, “External power-enhancement cavity versus intracavity frequency doubling of Ti:sapphire lasers using BIBO,” Opt. Express 15(19), 11913–11921 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-11913 .
    [CrossRef]
  3. T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
    [CrossRef]
  4. C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28(6), 432–434 (2003).
    [CrossRef]
  5. Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
    [CrossRef]
  6. M. Bode, I. Freitag, A. Tünnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 22(16), 1220–1222 (1997).
    [CrossRef]
  7. E. Hao, H. Tan, and L. Q. Te Li, “single-frequency laser at 473 nm by use of twisted-mode technique,” Opt. Commun. 270(2), 327–331 (2007).
    [CrossRef]
  8. T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
    [CrossRef]
  9. T. Y. Fan and L. R. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).
  10. R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, “Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm,” Opt. Lett. 31(12), 1869–1871 (2006).
    [CrossRef]
  11. R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
    [CrossRef]
  12. S. Bjurshagen, D. Evekull, and R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on 4F3/2–4I9/2 transitions,” Appl. Phys. B 76(2), 135–141 (2003).
    [CrossRef]
  13. S. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
    [CrossRef]
  14. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
    [CrossRef]
  15. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [CrossRef]

2008

2007

L. S. Cruz and F. C. Cruz, “External power-enhancement cavity versus intracavity frequency doubling of Ti:sapphire lasers using BIBO,” Opt. Express 15(19), 11913–11921 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-11913 .
[CrossRef]

E. Hao, H. Tan, and L. Q. Te Li, “single-frequency laser at 473 nm by use of twisted-mode technique,” Opt. Commun. 270(2), 327–331 (2007).
[CrossRef]

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

2006

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, “Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm,” Opt. Lett. 31(12), 1869–1871 (2006).
[CrossRef]

2004

2003

C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28(6), 432–434 (2003).
[CrossRef]

S. Bjurshagen, D. Evekull, and R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on 4F3/2–4I9/2 transitions,” Appl. Phys. B 76(2), 135–141 (2003).
[CrossRef]

1998

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[CrossRef]

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[CrossRef]

1997

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[CrossRef]

M. Bode, I. Freitag, A. Tünnermann, and H. Welling, “Frequency-tunable 500-mW continuous-wave all-solid-state single-frequency source in the blue spectral region,” Opt. Lett. 22(16), 1220–1222 (1997).
[CrossRef]

1990

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

1987

T. Y. Fan and L. R. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Becker, T. H.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Bjurshagen, S.

S. Bjurshagen, D. Evekull, and R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on 4F3/2–4I9/2 transitions,” Appl. Phys. B 76(2), 135–141 (2003).
[CrossRef]

Bjurshagen, S. S.

Bode, M.

Byer, L. R.

T. Y. Fan and L. R. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Chen, Y.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Clarkson, W. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[CrossRef]

Cruz, F. C.

Cruz, L. S.

Cui, D.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Czeranowsky, C.

Ding, X.

Donald, M. M.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[CrossRef]

Dumke, R.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Evekull, D.

S. Bjurshagen, D. Evekull, and R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on 4F3/2–4I9/2 transitions,” Appl. Phys. B 76(2), 135–141 (2003).
[CrossRef]

Fan, T. Y.

T. Y. Fan and L. R. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Freitag, I.

Geng, A.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Hanna, D. C.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[CrossRef]

Hao, E.

E. Hao, H. Tan, and L. Q. Te Li, “single-frequency laser at 473 nm by use of twisted-mode technique,” Opt. Commun. 270(2), 327–331 (2007).
[CrossRef]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[CrossRef]

Heine, F.

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[CrossRef]

Heumann, E.

Hou, W.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Huang, L.

Huber, G.

C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm,” Opt. Lett. 28(6), 432–434 (2003).
[CrossRef]

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Kellner, T.

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[CrossRef]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[CrossRef]

Koch, R.

S. S. Bjurshagen and R. Koch, “Modeling of energy-transfer upconversion and thermal effects in end-pumped quasi-three-level lasers,” Appl. Opt. 43(24), 4753–4767 (2004).
[CrossRef]

S. Bjurshagen, D. Evekull, and R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on 4F3/2–4I9/2 transitions,” Appl. Phys. B 76(2), 135–141 (2003).
[CrossRef]

Li, E.

Li, H.

Li, Z.

Liu, T.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Lou, L.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Lu, Z. H.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[CrossRef]

Peng, H.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Peng, Q.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Pollnau, M.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[CrossRef]

Roos, M. B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[CrossRef]

Stejskal, A.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Tan, H.

E. Hao, H. Tan, and L. Q. Te Li, “single-frequency laser at 473 nm by use of twisted-mode technique,” Opt. Commun. 270(2), 327–331 (2007).
[CrossRef]

Te Li, L. Q.

E. Hao, H. Tan, and L. Q. Te Li, “single-frequency laser at 473 nm by use of twisted-mode technique,” Opt. Commun. 270(2), 327–331 (2007).
[CrossRef]

T├╝nnermann, A.

Walther, H.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Wang, L. J.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Wang, P.

Wang, R.

Wang, Y. H.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Weber, H. P.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[CrossRef]

Welling, H.

Wen, W. Q.

Xu, Z.

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

Yao, J.

Yao, J. Q.

Yu, X. Y.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Zhang, H.

Zhang, J.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Zhao, Y. N.

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Zhou, R.

Appl. Opt.

Appl. Phys. B

T. Kellner, F. Heine, and G. Huber, “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, β-BaB2O4, and LiB3O5,” Appl. Phys. B 65(6), 789–792 (1997).
[CrossRef]

T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, T. H. Becker, and H. Walther, “Narrow linewidth light source for an ultraviolet optical frequency standard,” Appl. Phys. B 87(2), 227–232 (2007).
[CrossRef]

Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Lou, D. Cui, and Z. Xu, “3.8W of cw blue light generated by intracavity frequency doubling of a 946-nm Nd:YAG laser with LBO,” Appl. Phys. B 83(2), 241–243 (2006).
[CrossRef]

S. Bjurshagen, D. Evekull, and R. Koch, “Efficient generation of blue light by frequency doubling of a Nd:YAG laser operating on 4F3/2–4I9/2 transitions,” Appl. Phys. B 76(2), 135–141 (2003).
[CrossRef]

Appl. Phys. Lett.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Roos, and H. P. Weber, “Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[CrossRef]

T. Y. Fan and L. R. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Opt. Commun.

E. Hao, H. Tan, and L. Q. Te Li, “single-frequency laser at 473 nm by use of twisted-mode technique,” Opt. Commun. 270(2), 327–331 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics