Abstract

This paper presents a method for the efficient production of all-fiber semi reflective mirrors suitable for fiber sensors and other all-fiber device applications. The mirrors are obtained by the short duration etching of a standard single mode fiber in hydrofluoric acid, followed by an on-line feedback-assisted fusion splicing process. Fiber mirror reflectance up to 9.5% with excess losses below 0.25 dB were produced in practice, which is in good agreement with provided theoretical and modeling analyses. Control over the etching time and fusion splicing process allows for balancing between reflectance and transmittance, while maintaining low excess loss of experimentally produced mirrors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A Atkins, J. H Gardner, W. N. Gibler, C. E Lee, M. D Oakland, M. O Spears, V. P Swenson, H. F Taylor, J. J McCoy, and G Beshouri, “Fiberoptic pressure sensors for internal-combustion engines,” Appl. Opt. 33, 1315–1320 (1994).
    [CrossRef] [PubMed]
  2. X. P. Chen, F. B. Shen, Z. A. Wang, Z. Y. Huang, and A. B. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
    [CrossRef] [PubMed]
  3. Y. M. Wang, K. L. Cooper, and A. B. Wang, “Microgap Structured Optical Sensor for Fast Label-Free DNA Detection,” J. Lightwave Technol. 26(17), 3181–3185 (2008).
    [CrossRef]
  4. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  5. C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
    [CrossRef]
  6. WH. Tsai and C. J. Lin, “A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor,” IEEE J. Lightwave Technol. 19(5), 682–686 (2001).
    [CrossRef]
  7. H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” IEEE J. Lightwave Technol. 15(4), 647–653 (1997).
    [CrossRef]
  8. E. Cibula and D. Donlagic, “In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR,” Opt. Express 15(14), 8719–8730 (2007).
    [CrossRef] [PubMed]
  9. Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers,” Chin. Phys. Lett. 27, 024208 (2010).
    [CrossRef]
  10. E. Cibula, D. Donlagic, and C. Stropnik, “Miniature Fiber Optic Pressure Sensor for Medical Applications”, in Proceedings of IEEE Sensors (Institute of Electrical and Electronics Engineers, Orlando, 2002), pp. 711–714.
  11. E. Cibula and D. Donlagić, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
    [CrossRef] [PubMed]

2010 (1)

Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers,” Chin. Phys. Lett. 27, 024208 (2010).
[CrossRef]

2008 (2)

2007 (1)

2006 (1)

2005 (1)

2001 (1)

WH. Tsai and C. J. Lin, “A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor,” IEEE J. Lightwave Technol. 19(5), 682–686 (2001).
[CrossRef]

1997 (1)

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” IEEE J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

1994 (1)

1988 (1)

C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

Atkins, R. A

Beshouri, G

Chen, X. P.

Chiang, K. S.

Cibula, E.

Cooper, K. L.

Donlagic, D.

Gardner, J. H

Gibler, W. N.

Gong, Y.

Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers,” Chin. Phys. Lett. 27, 024208 (2010).
[CrossRef]

Huang, Z. Y.

Lee, C. E

Lee, C. E.

C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

Liao, X.

Lin, C. J.

WH. Tsai and C. J. Lin, “A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor,” IEEE J. Lightwave Technol. 19(5), 682–686 (2001).
[CrossRef]

Liu, W. J.

McCoy, J. J

Oakland, M. D

Ran, Z. L.

Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers,” Chin. Phys. Lett. 27, 024208 (2010).
[CrossRef]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[CrossRef] [PubMed]

Rao, Y. J.

Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers,” Chin. Phys. Lett. 27, 024208 (2010).
[CrossRef]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[CrossRef] [PubMed]

Shen, F. B.

Singh, H.

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” IEEE J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

Sirkis, J. S.

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” IEEE J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

Spears, M. O

Swenson, V. P

Taylor, H. F

Taylor, H. F.

C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

Tsai, H.

WH. Tsai and C. J. Lin, “A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor,” IEEE J. Lightwave Technol. 19(5), 682–686 (2001).
[CrossRef]

Wang, A. B.

Wang, Y. M.

Wang, Z. A.

Xu, B.

Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers,” Chin. Phys. Lett. 27, 024208 (2010).
[CrossRef]

Appl. Opt. (3)

Chin. Phys. Lett. (1)

Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers,” Chin. Phys. Lett. 27, 024208 (2010).
[CrossRef]

Electron. Lett. (1)

C. E. Lee and H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

IEEE J. Lightwave Technol. (2)

WH. Tsai and C. J. Lin, “A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor,” IEEE J. Lightwave Technol. 19(5), 682–686 (2001).
[CrossRef]

H. Singh and J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” IEEE J. Lightwave Technol. 15(4), 647–653 (1997).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (1)

E. Cibula, D. Donlagic, and C. Stropnik, “Miniature Fiber Optic Pressure Sensor for Medical Applications”, in Proceedings of IEEE Sensors (Institute of Electrical and Electronics Engineers, Orlando, 2002), pp. 711–714.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

FP cavity as an in-fiber mirror

Fig. 2
Fig. 2

(a) reflectance, (b) transmittance and (c) excess loss vs. cavity length, for two different cavity diameters: dcav = dcore = 8.4 µm (red line) and dcav = 30 µm >>dcore (blue line)

Fig. 3
Fig. 3

FDTD simulation of an in-fiber cavity: (a) large-diameter cavity (dcav = 30 µm >>dcore ) and (b) real cavity model (dcav≈dcore )

Fig. 4
Fig. 4

Spectral width of the FP cavity length (L = λ/4 = 1310 nm/4)

Fig. 5
Fig. 5

(a) Reflectance and (b) excess loss of the mirror vs. etching time

Fig. 6
Fig. 6

Experimental setup for mirror fabrication

Fig. 7
Fig. 7

Reflectance vs. time during splicing

Fig. 8
Fig. 8

Reflectance fine-tuning: example of fine-tuning mirror reflectance from initial 6.7% to a target of 7%

Fig. 9
Fig. 9

Fiber mirror under an optical microscope

Fig. 10
Fig. 10

Determination of FDTD simulation layout for a cavity with rounded edges

Fig. 11
Fig. 11

(a) average values with standard deviation and (b) the minimum achieved values of excess loss for different target mirror reflectances

Fig. 12
Fig. 12

Histograms of (a) reflectance and (b) excess losses for 30 produced mirror samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w ( L ) w 0 = 1 + ( λ π w 0 2 L ) 2
R c = 2 R ( 1 cos ( 4 π λ L ) ) 1 + R 2 2 R cos ( 4 π λ L )
R min = 0                     R c                   4 R ( 1 + R ) 2
0 R c 0.127
α E = 10 log ( P r e f l c t e d + P t r a n s m i t t e d P l a u n c h e d )

Metrics