Abstract

This paper proposes a method to design an incident-angle-insensitive polarization-independent polarization rotator. This polarization rotator is composed of layers of impedance-matched anisotropic metamaterial (IMAM) with each layer’s optical axes gradually rotating an angle. Numerical simulation based on the generalized 4 × 4 transfer matrix method is applied, and the results reveal that the IMAM rotator is not only polarization-independent but also insensitive to the angle of incidence. A 90° polarization rotation with tiny ellipticity variation is still available at a wide range of incident angles from 0 to 40°, which is further confirmed with a microwave bi-split-ring resonator (bi-SRR) rotator. This may be valuable for the design of optoelectronic and microwave devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Yu, and H. Y. Tan, Engineering Optics(in chinese) (China Machine Press, Beijing, 2006).
  2. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]
  3. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
    [CrossRef]
  4. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]
  5. W. Zhang, J. Liu, W. P. Huang, and W. Zhao, “Self-collimating photonic-crystal wave plates,” Opt. Lett. 34(17), 2676–2678 (2009).
    [CrossRef] [PubMed]
  6. J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16(22), 18057–18066 (2008).
    [CrossRef] [PubMed]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  8. J.-M. Lourtioz, “Photonic crystals and metamaterials,” C. R. Phys. 9(1), 4–15 (2008).
    [CrossRef]
  9. M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
    [CrossRef]
  10. J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92(7), 071114 (2008).
    [CrossRef]
  11. H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
    [CrossRef]
  12. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007).
    [CrossRef] [PubMed]
  13. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [CrossRef] [PubMed]
  14. K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Lett. 17, 7145–7158 (2009).
  15. J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express 17(9), 7640–7647 (2009).
    [CrossRef] [PubMed]
  16. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
    [CrossRef]
  17. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [CrossRef] [PubMed]
  18. S. K. Awasthi and S. P. Ojha, “Wide-angle, broadband plate polarizer with 1D photonic crystal,” Prog. Electromag. Res. PIER 88, 321–335 (2008).
    [CrossRef]
  19. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [CrossRef]
  20. J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropicslabs,” IEEE Trans. Microwave Theory Tech. 40(10), 1870–1878 (1992).
    [CrossRef]
  21. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Pub. Co., New York, 1977).
  22. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
    [CrossRef]
  23. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
    [CrossRef]
  24. J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88(13), 134108 (2006).
    [CrossRef]

2009 (4)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Lett. 17, 7145–7158 (2009).

J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express 17(9), 7640–7647 (2009).
[CrossRef] [PubMed]

W. Zhang, J. Liu, W. P. Huang, and W. Zhao, “Self-collimating photonic-crystal wave plates,” Opt. Lett. 34(17), 2676–2678 (2009).
[CrossRef] [PubMed]

2008 (9)

J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16(22), 18057–18066 (2008).
[CrossRef] [PubMed]

S. K. Awasthi and S. P. Ojha, “Wide-angle, broadband plate polarizer with 1D photonic crystal,” Prog. Electromag. Res. PIER 88, 321–335 (2008).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

J.-M. Lourtioz, “Photonic crystals and metamaterials,” C. R. Phys. 9(1), 4–15 (2008).
[CrossRef]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[CrossRef]

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92(7), 071114 (2008).
[CrossRef]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

2007 (4)

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[CrossRef]

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007).
[CrossRef] [PubMed]

2006 (2)

J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88(13), 134108 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

2005 (2)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

1992 (1)

J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropicslabs,” IEEE Trans. Microwave Theory Tech. 40(10), 1870–1878 (1992).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Awasthi, S. K.

S. K. Awasthi and S. P. Ojha, “Wide-angle, broadband plate polarizer with 1D photonic crystal,” Prog. Electromag. Res. PIER 88, 321–335 (2008).
[CrossRef]

Baena, J. D.

J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88(13), 134108 (2006).
[CrossRef]

Bai, B.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Bayat, K.

K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Lett. 17, 7145–7158 (2009).

Beruete, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[CrossRef]

Campillo, I.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[CrossRef]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Chaudhuri, S. K.

K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Lett. 17, 7145–7158 (2009).

Chen, Y.

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92(7), 071114 (2008).
[CrossRef]

Chin, J. Y.

Cui, T. J.

Dunbar, L. A.

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Feng, Y.

J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16(22), 18057–18066 (2008).
[CrossRef] [PubMed]

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92(7), 071114 (2008).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Gollub, J. N.

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Harrison, C.

Houdré, R.

Huang, W. P.

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Jelinek, L.

J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88(13), 134108 (2006).
[CrossRef]

Jiang, T.

J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16(22), 18057–18066 (2008).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Kotlyar, M. V.

Krauss, T. F.

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Le Thomas, N.

Lederer, F.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[CrossRef]

Li, F.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[CrossRef]

Li, T.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Liu, H.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Liu, J.

Liu, R.

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Lourtioz, J.-M.

J.-M. Lourtioz, “Photonic crystals and metamaterials,” C. R. Phys. 9(1), 4–15 (2008).
[CrossRef]

Luo, H.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[CrossRef]

Marques, R.

J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88(13), 134108 (2006).
[CrossRef]

Menzel, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[CrossRef]

Mock, J. J.

Navarro-Cía, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[CrossRef]

O’Faolain, L.

Ojha, S. P.

S. K. Awasthi and S. P. Ojha, “Wide-angle, broadband plate polarizer with 1D photonic crystal,” Prog. Electromag. Res. PIER 88, 321–335 (2008).
[CrossRef]

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[CrossRef]

Pertsch, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Ren, Z.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[CrossRef]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[CrossRef]

Safavi-Naeini, S.

K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Lett. 17, 7145–7158 (2009).

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Shu, W.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Smith, D. R.

Sorolla, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[CrossRef]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Svirko, Y.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Tsalamengas, J. L.

J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropicslabs,” IEEE Trans. Microwave Theory Tech. 40(10), 1870–1878 (1992).
[CrossRef]

Turunen, J.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Wang, F. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Wang, S. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Yin, X. G.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Zabelin, V.

Zehentner, J.

J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88(13), 134108 (2006).
[CrossRef]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, W.

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express 16(22), 18057–18066 (2008).
[CrossRef] [PubMed]

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92(7), 071114 (2008).
[CrossRef]

Zhao, W.

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhu, B.

Zhu, S. N.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Appl. Phys. B (1)

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

J. Zhao, Y. Chen, and Y. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92(7), 071114 (2008).
[CrossRef]

J. D. Baena, L. Jelinek, R. Marques, and J. Zehentner, “Electrically small isotropic three-dimensional magnetic resonators for metamaterial design,” Appl. Phys. Lett. 88(13), 134108 (2006).
[CrossRef]

C. R. Phys. (1)

J.-M. Lourtioz, “Photonic crystals and metamaterials,” C. R. Phys. 9(1), 4–15 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropicslabs,” IEEE Trans. Microwave Theory Tech. 40(10), 1870–1878 (1992).
[CrossRef]

J. Appl. Phys. (1)

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys. 103(5), 053102 (2008).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007).
[CrossRef]

Phys. Rev. B (3)

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[CrossRef] [PubMed]

Prog. Electromag. Res. (1)

S. K. Awasthi and S. P. Ojha, “Wide-angle, broadband plate polarizer with 1D photonic crystal,” Prog. Electromag. Res. PIER 88, 321–335 (2008).
[CrossRef]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

Science (1)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Other (2)

D. Y. Yu, and H. Y. Tan, Engineering Optics(in chinese) (China Machine Press, Beijing, 2006).

R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Pub. Co., New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of a multilayered metamaterial rotator. The plane of incidence is in x-z plane. ϕ is the angle between the axes of the adjacent layers. φ and θ are the polarization angle and incident angle of the incident wave, respectively.

Fig. 2
Fig. 2

Schematic view of the polarization vector projections on x-y plane when the light is normally incident. The crystal axes of the anisotropic slabs are rotated along z direction by an angleϕin sequence.

Fig. 3
Fig. 3

The projections of (a) the ellipticity Δ and (b) the polarization rotation angle ψ t with respect to k x / k 0 and δ when φ = 45°. The projection views of (c) Δ and (d) ψ t with respect to δ and φ at 40° incident angle, in which φ ranges from −90° to 90°. The insets demonstrate the three-dimensional relations. The lossless IMAM bilayered polarization rotator is characterized with ε x x = μ y y = 2 , ε y y = μ x x = 1 , ε z z = μ z z = 1 , and a total thickness 2 h / λ 0 = 3.

Fig. 4
Fig. 4

(a) The amplitudes of transmission coefficients | T EM | and | T M E | , (b) the phase difference T E M T M E , (c) the polarization rotation angle ψ t and (d) the ellipticity Δ with respect to the incident transversal vector k x / k 0 for three different anisotropic bilayered structures characterized as ε x x = 2 b , ε y y = ε z z = 1 , μ y y = 2 / b , μ x x = μ z z = 1 , and the total thickness 2 h / λ 0 = 3 , when δ = 45 ° , φ = 45 ° . (e) Longitudinal wave vector difference ( k MZ k EZ ) between TM and TE components and (f) p + 1/p as a function of k x / k 0 for different b values.

Fig. 5
Fig. 5

(a) and (b) are schematic layouts of the bi-SRR half-wave retarder. az = ay = 5 mm, z = y = 4 mm, w = 0.2 mm, p = 0.12 mm, g = 0.2 mm, the substrate thickness t = 0.5 mm, the separation distance between adjacent layers s = 1.0 mm, and the thickness of metal (perfect electric conductor) is 0.08mm. (c) The structure of the polarization rotator, where yellow arrow indicates the incident waves, pink arrows indicate the direction of electric field.

Fig. 6
Fig. 6

(a) The amplitudes of the transmission and reflection coefficients, (b) the phase of the transmission coefficient of TE and TM waves at normal incidence for polarization rotator with lossless substrate. (c) The transmission coefficients and (d) the phase difference between the two orthogonal polarized waves with respect to k x / k 0 at 3.25 GHz.(e) and (g) Polarization rotation angle, (f) and (h) ellipticity variations with respect to incident wave polarization under different angles of incidence, where (e) and (f) are for lossless substrate with ε r = 4.9 , (g) and (h) are for lossy substrate with ε r = 4.9 + 0.01.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

= ( cos ϕ sin ϕ 0 sin ϕ cos ϕ 0 0 0 1 ) ,
P ¯ ¯ t o t a l ( H ) = P ¯ ¯ m ( h m ) P ¯ ¯ m 1 ( h m 1 ) P ¯ ¯ 1 ( h 1 ) ,
E t ( sin φ cos φ ) = E 0 ( T M M T M E T E M T E E ) ( cos φ sin φ ) ,
0 = E 0 [ T M M cos 2 φ + T E E sin 2 φ + ( T M E + T E M ) sin φ cos φ ] .
ε r = ( ε x x 0 0 0 ε y y 0 0 0 ε z z ) ,
μ r = ( μ x x 0 0 0 μ y y 0 0 0 μ z z ) ,
ε y y / μ x x = ε x x / μ y y = ε s u r / μ s u r = 1 / Z .
T E = exp ( i ε y y ' k 0 h Z ) exp ( ε y y ' ' k 0 h Z ) ,
T M = exp ( i μ y y ' k 0 h / Z ) exp ( μ y y ' ' k 0 h / Z ) ,
ε y y ' ' = ε x x ' ' = μ x x ' ' / Z 2 = μ y y ' ' / Z 2 ,
( E 1 < n + 1 > E 2 < n + 1 > ) = ( T E cos ϕ T E sin ϕ T M sin ϕ T M cos ϕ ) n × { ( T E cos δ T E sin δ T M sin δ T M cos δ ) ( E i M E i E ) } .
( T M M T M E T E M T E E ) = ( cos ( n ϕ + δ ) sin(n ϕ + δ ) sin ( n ϕ + δ ) cos ( n ϕ + δ ) ) × { ( T E cos ϕ T E sin ϕ T M sin ϕ T M cos ϕ ) n ( T E cos δ T E sin δ T M sin δ T M cos δ ) } .
( T M M T M E T E M T E E ) = T n + 1 ( cos [ ( n + 1 ) ϕ ] sin [ ( n + 1 ) ϕ ] sin [ ( n + 1 ) ϕ ] cos [ ( n + 1 ) ϕ ] ) .
( T M M T M E T E M T E E ) = T n + 1 ( 0 ± 1 1 0 ) .
Δ = E a / E b ,
ψ t = φ t φ ,
T M = 2 × [ 2 cos ( k M Z d ) i ( p M + 1 / p M ) sin ( k M Z d ) ] 1 ,
p M = [ ( μ yy / ε x x ) k 0 2 k x 2 / ( ε x x ε zz ) ] 1 / 2 / ( k 0 2 k x 2 ) 1 / 2 .

Metrics