Abstract

We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Γ-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is ≈ 15°, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
    [CrossRef] [PubMed]
  2. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
    [CrossRef]
  3. L. Hua Zhang, “Andrea Dunbar, Giacomo Scalari, Romuald Houdr, and Jrme Faist, ”Terahertz photonic crystal quantum cascade lasers,” Opt. Express 15, 16818–16827 (2007).
    [CrossRef] [PubMed]
  4. A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express 17, 941–946 (2009).
    [CrossRef] [PubMed]
  5. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
    [CrossRef] [PubMed]
  6. G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
    [CrossRef]
  7. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
    [CrossRef]
  8. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
    [CrossRef] [PubMed]
  9. G. Xu, Y. Chassagneux, R. Colombelli, G. Beaudoin, and I. Sagnes, “Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers,” Opt. Lett. 35, 859 (2010).
    [CrossRef] [PubMed]
  10. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
    [CrossRef]
  11. S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
    [CrossRef]
  12. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  13. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
    [CrossRef]
  14. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Scherer, and A. Yariv, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavitites,” J. Opt. Soc. Am. B 15(3), 1155–1159 (1998).
    [CrossRef]
  15. The finite elements solver Comsol Multiphysics has been employed for the simulations. Bloch-periodic boundary conditions where implemented.
  16. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
    [CrossRef]
  17. A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
    [CrossRef]
  18. K.-H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B 26, 1326–1333 (2008).
    [CrossRef]
  19. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. Karle, K.-H. Lee, R. Braive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, “Continuous-wave operation of photonic band edge laser near 1.55 m on silicon wafer,” Opt. Express 15, 7551–7556 (2008).
    [CrossRef]
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
    [CrossRef] [PubMed]
  21. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
    [CrossRef]
  22. S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of a wavelength-scale photonic crystal resonator,” Phys. Rev. B 73, 235117 (2006).
    [CrossRef]
  23. J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002).
    [CrossRef]
  24. H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B 68, 045209 (2003).
    [CrossRef]
  25. L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
    [CrossRef] [PubMed]
  26. A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009).
    [CrossRef] [PubMed]

2010

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

G. Xu, Y. Chassagneux, R. Colombelli, G. Beaudoin, and I. Sagnes, “Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers,” Opt. Lett. 35, 859 (2010).
[CrossRef] [PubMed]

2009

2008

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

K.-H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B 26, 1326–1333 (2008).
[CrossRef]

G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. Karle, K.-H. Lee, R. Braive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, “Continuous-wave operation of photonic band edge laser near 1.55 m on silicon wafer,” Opt. Express 15, 7551–7556 (2008).
[CrossRef]

2007

2006

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of a wavelength-scale photonic crystal resonator,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

2005

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

2004

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

2003

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B 68, 045209 (2003).
[CrossRef]

2002

J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

1999

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

1998

Andrews, A.

Austin, D.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Babuty, A.

Bahriz, M.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Barbieri, S.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
[CrossRef] [PubMed]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

Beaudoin, G.

Beere, H. E.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

Benz, A.

Bermel, P.

Bouchoule, S.

Bousseksou, A.

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009).
[CrossRef] [PubMed]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

Braive, R.

Burr, G.

Capasso, F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

Chassagneux, Y.

G. Xu, Y. Chassagneux, R. Colombelli, G. Beaudoin, and I. Sagnes, “Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers,” Opt. Lett. 35, 859 (2010).
[CrossRef] [PubMed]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
[CrossRef] [PubMed]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009).
[CrossRef] [PubMed]

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

Cho, A. Y.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Ciuti, C.

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

Cockburn, J.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Colombelli, R.

G. Xu, Y. Chassagneux, R. Colombelli, G. Beaudoin, and I. Sagnes, “Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers,” Opt. Lett. 35, 859 (2010).
[CrossRef] [PubMed]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
[CrossRef] [PubMed]

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009).
[CrossRef] [PubMed]

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

D’Urso, B.

Dapkus, P.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Davies, A.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
[CrossRef] [PubMed]

Davies, G. A.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

De Wilde, Y.

Deutsch, C.

F., C.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Farjadpour, A.

Fasching, G.

Genner, U.

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

Gmachl, C.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

Gratiet, L. L.

Guilet, S.

Hu, Q.

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Hua Zhang, L.

Hwang, H. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

Ibanescu, M.

Imada, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Joannopoulos, J. D.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Johnson, S. G.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Karle, T.

Khanna, S.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
[CrossRef] [PubMed]

Khanna, S. P.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, S. H.

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of a wavelength-scale photonic crystal resonator,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Kim, S. K.

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of a wavelength-scale photonic crystal resonator,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

Klang, P.

Kohen, S.

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Kolodziejaki, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Krysa, A.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Largeau, L.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

Lee, K.-H.

Lee, R.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of a wavelength-scale photonic crystal resonator,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B 68, 045209 (2003).
[CrossRef]

Levenson, A.

Linfield, E.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
[CrossRef] [PubMed]

Linfield, E. H.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

Loncar, M.

J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Mabuchi, H.

J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Maineult, W.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009).
[CrossRef] [PubMed]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

Manquest, C.

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

Mauguin, O.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Monnier, P.

Moreau, V.

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Noda, S.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

Notomi, M.

H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B 68, 045209 (2003).
[CrossRef]

O’Brien, J.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Scherer, and A. Yariv, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavitites,” J. Opt. Soc. Am. B 15(3), 1155–1159 (1998).
[CrossRef]

Painter, O.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Scherer, and A. Yariv, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavitites,” J. Opt. Soc. Am. B 15(3), 1155–1159 (1998).
[CrossRef]

Palomo, J.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Patriarche, G.

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009).
[CrossRef] [PubMed]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

K.-H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B 26, 1326–1333 (2008).
[CrossRef]

Raineri, F.

Raj, R.

Ritchie, D. A.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

Roberts, J.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Rodriguez, A.

Roundy, D.

Ryu, H. Y.

H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B 68, 045209 (2003).
[CrossRef]

Sagnes, I.

G. Xu, Y. Chassagneux, R. Colombelli, G. Beaudoin, and I. Sagnes, “Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers,” Opt. Lett. 35, 859 (2010).
[CrossRef] [PubMed]

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009).
[CrossRef] [PubMed]

G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. Karle, K.-H. Lee, R. Braive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, “Continuous-wave operation of photonic band edge laser near 1.55 m on silicon wafer,” Opt. Express 15, 7551–7556 (2008).
[CrossRef]

K.-H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B 26, 1326–1333 (2008).
[CrossRef]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

Sapienza, L.

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

Scherer, A.

J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Scherer, and A. Yariv, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavitites,” J. Opt. Soc. Am. B 15(3), 1155–1159 (1998).
[CrossRef]

Schrenk, W.

Sergent, A. M.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

Sirtori, C.

A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009).
[CrossRef] [PubMed]

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

Sivco, D. L.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

Srinivasan, K.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

Strasser, G.

Talneau, A.

Tennant, D. M.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

Tombrello, T.

Troccoli, M.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

Unterrainer, K.

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express 17, 941–946 (2009).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

Vasanelli, A.

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

Vecchi, G.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Vuckovic, J.

J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Williams, B.

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Wilson, L.

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Xu, G.

G. Xu, Y. Chassagneux, R. Colombelli, G. Beaudoin, and I. Sagnes, “Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers,” Opt. Lett. 35, 859 (2010).
[CrossRef] [PubMed]

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

Yacomotti, A.

Yariv, A.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Scherer, and A. Yariv, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavitites,” J. Opt. Soc. Am. B 15(3), 1155–1159 (1998).
[CrossRef]

Appl. Phys. Lett.

K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004).
[CrossRef]

G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002).
[CrossRef]

M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006).
[CrossRef]

Electron. Lett.

A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008).
[CrossRef]

IEEE J. Quantum Electron.

J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

J. Appl. Phys.

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

K.-H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B 26, 1326–1333 (2008).
[CrossRef]

Nature

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of a wavelength-scale photonic crystal resonator,” Phys. Rev. B 73, 235117 (2006).
[CrossRef]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B 68, 045209 (2003).
[CrossRef]

Phys. Rev. Lett.

L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008).
[CrossRef] [PubMed]

Science

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003).
[CrossRef] [PubMed]

Other

The finite elements solver Comsol Multiphysics has been employed for the simulations. Bloch-periodic boundary conditions where implemented.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic cross section of a PhC device. (b) Scanning electron microscope (SEM) image of a typical device. The SEM top view and cross-section of the central part of the PhC structure are shown in panels (c) and (d), respectively. In particular, panel (c) shows the extremey precise alignment between first and second level ebeam lithography.

Fig. 2.
Fig. 2.

(a) Calculated photonic band structure of the PhC. The y-axis in absolute frequency units refers to a structure with active region thickness 3.5 μm, etching depth 6.2 μm, lattice period a = 3.6 μm, radius of the air holes r/a = 0.24. The light gray regions correspond to the light cone. The dark gray horizontal bands highlight the three groups of band-edge modes relevant for lasing. (b) EL spectrum (red curve) measured under threshold at a temperature of 300K. The blue curve is the lasing spectrum of the same device, measured above threshold and at the maximum operation temperature (220K). The intensity is normalized. The absolute frequency scales are identical since the laser structure parameters are the same as those used in the calculation of the photonic band structure.

Fig. 3.
Fig. 3.

Electric field distribution (E z ) of the six band-edge modes in proximity of the Γ-point of the photonic band structure. The calculation is performed for an infinite periodic lattice. The distribution of E z is a section parallel to the semiconductor layers, which has been taken at the middle of active region. (a) shows the hexapolar mode at Γ-point (a/λ, = 0.355). (b) and (c) show the two degenerated quadrupolar modes at the Γ-point (a/λ = 0.359), (d) shows the quadrupolar mode at kx = 0, ky π/(3a), with reduced frequency a/λ = 0.372. (e) and (f) show the two degenerated dipolar modes at Γ-point (a/λ = 0.388).

Fig. 4.
Fig. 4.

(a) EL spectra of devices with the same r/a = 0.24, but with different photonic lattice periods. The EL spectrum of a Fabry-Perot ridge laser fabricated with the same material is also shown. The spectra are measured at 78K in pulsed mode. The pulse width is 5 μs, the repetition frequency is 84 kHz, and the current density is 0.6 kA/cm2. (b) Peak emission wavelength of the PhC resonances of panel (a) plotted as a function of the photonic lattice period. The dependence is correctly linear.

Fig. 5.
Fig. 5.

Lasing spectra (a) and light-current-voltage characteristics (b) of a typical device measured in pulsed mode at different heat sink temperatures. The pulse width is 50ns, and the repetition frequency is 84 kHz. The maximum operating temperature is 220K. For comparison, the T max of Fabry-Perot lasers with the same active material is 240K.

Fig. 6.
Fig. 6.

(a) Far-field measured at 78K in pulsed mode (50ns at 84 kHz). (b) and (c) far-field patterns measured with a linear polarizer placed in front of the detector in the θ y and θ x directions, respectively. The arrows show the polarization direction, and the inset of panel (a) defines the scan directions. The angular resolution is 0.5 degrees. The sample-to-detector distance is 15 cm.

Fig. 7.
Fig. 7.

Horizontal view (a) and cross-section (b) of the FDTD calculation domain surrounded by perfectly matched layer boundaries. The number of periods of the simulated PhC resonator, starting from the center, is 8. The top metallization layer is approximated as perfect metal. The index of the active region and substrate are 3.25 and 2.9, respectively.

Fig. 8.
Fig. 8.

(a) Distribution of the electric field (E z ) in the PhC plane taken in the middle of the active region. The calculation is the result of the 3D FDTD simulation. (b) and (c) show the x (H x ) and y (H y ) components of the transverse magnetic fields in the near-field, which is 5 μm above the PhC surface.

Fig. 9.
Fig. 9.

(a) Calculated far-field pattern. (b) and (c) show the component of the far-field pattern polarized in θ y and θ x directions, respectively. The symmetry and polarization are in excellent agreement with the experimental results in Fig. 6. However, the angular divergence is larger than in the experiment, since the simulated PhC - for computational reasons - has only 8 periods instead of 21.

Tables (1)

Tables Icon

Table 1. Normalized frequency, waveguide loss and confinement factors of the band-edge modes calculated for an infinite PhC structure. All the modes except the one marked by “*” are at the Γ point of the photonic-band structure. The mode marked by “*” is at k x = 0, k y = π/(3a).

Metrics