Abstract

We report on the light scattering phenomenon in annealed multidomain LiNbO3:Fe:Hf crystals. The scattering sources are found to be some fog-like “defects”, which cause the polarization-dependent scattering of the light, and can be removed completely by the illumination of visible light. Based on these results and the etch patterns, these “defects” are suggested to be refractive index fluctuations induced by the space charges accumulated at the boundary of opposite microdomains. The influence of quick heating-up on the “defects” is also studied and the results firmly support our suggestion about the nature of the “defects”. At last, the temporal curves of the transmitted intensity during the light scattering are explained. The mechanism for the opposite microdomain formation is also explained from the view of crystal growth.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter, and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II, (Springer, Heidelberg, 1989).
  2. T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
    [CrossRef]
  3. T. Volk, and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, (Springer, Berlin, 2008).
  4. T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
    [CrossRef]
  5. M. Simon, F. Jermann, T. R. Volk, and E. Krätzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi 149(2), 723–732 (1995).
    [CrossRef]
  6. S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
    [CrossRef]
  7. W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
    [CrossRef]
  8. A. M. Prokhorov, and Yu. S. Kuz’minov, Physics and Chemistry of Lithium Niobate, (Bristol, Hilger, 1990)
  9. V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Dieguéz, “The effect of native defects on the domain structures of LiNbO3: Fe- a case study by addition of MgO and K2O to the congruent melt,” J. Phys. Condens. Matter 9(28), 6097–6101 (1997).
    [CrossRef]
  10. D. Callejo, V. Bermúdez, and E. Dieguéz, “Influence of Hf ions in the formation of Periodic Poled Lithium Niobate Structures,” J. Phys. Condens. Matter 13(6), 1337–1342 (2001).
    [CrossRef]
  11. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
    [CrossRef]
  12. E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81(6), 729–751 (2005).
    [CrossRef]
  13. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
    [CrossRef]
  14. R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [CrossRef]
  15. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13(11), 2513–2523 (1996).
    [CrossRef]
  16. E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
    [CrossRef]

2007 (1)

W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
[CrossRef]

2006 (1)

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[CrossRef]

2005 (2)

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[CrossRef]

E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81(6), 729–751 (2005).
[CrossRef]

2004 (1)

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
[CrossRef]

2001 (1)

D. Callejo, V. Bermúdez, and E. Dieguéz, “Influence of Hf ions in the formation of Periodic Poled Lithium Niobate Structures,” J. Phys. Condens. Matter 13(6), 1337–1342 (2001).
[CrossRef]

1997 (2)

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
[CrossRef]

V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Dieguéz, “The effect of native defects on the domain structures of LiNbO3: Fe- a case study by addition of MgO and K2O to the congruent melt,” J. Phys. Condens. Matter 9(28), 6097–6101 (1997).
[CrossRef]

1996 (1)

1995 (2)

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

M. Simon, F. Jermann, T. R. Volk, and E. Krätzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi 149(2), 723–732 (1995).
[CrossRef]

1994 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Bermúdez, V.

D. Callejo, V. Bermúdez, and E. Dieguéz, “Influence of Hf ions in the formation of Periodic Poled Lithium Niobate Structures,” J. Phys. Condens. Matter 13(6), 1337–1342 (2001).
[CrossRef]

V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Dieguéz, “The effect of native defects on the domain structures of LiNbO3: Fe- a case study by addition of MgO and K2O to the congruent melt,” J. Phys. Condens. Matter 9(28), 6097–6101 (1997).
[CrossRef]

Bower, R.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

Buse, K.

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
[CrossRef]

Callejo, D.

D. Callejo, V. Bermúdez, and E. Dieguéz, “Influence of Hf ions in the formation of Periodic Poled Lithium Niobate Structures,” J. Phys. Condens. Matter 13(6), 1337–1342 (2001).
[CrossRef]

Chen, H.

W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
[CrossRef]

Cristiani, I.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
[CrossRef]

Degiorgio, V.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
[CrossRef]

Dieguéz, E.

D. Callejo, V. Bermúdez, and E. Dieguéz, “Influence of Hf ions in the formation of Periodic Poled Lithium Niobate Structures,” J. Phys. Condens. Matter 13(6), 1337–1342 (2001).
[CrossRef]

V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Dieguéz, “The effect of native defects on the domain structures of LiNbO3: Fe- a case study by addition of MgO and K2O to the congruent melt,” J. Phys. Condens. Matter 9(28), 6097–6101 (1997).
[CrossRef]

Dutta, P. S.

V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Dieguéz, “The effect of native defects on the domain structures of LiNbO3: Fe- a case study by addition of MgO and K2O to the congruent melt,” J. Phys. Condens. Matter 9(28), 6097–6101 (1997).
[CrossRef]

Fischer, C.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Gruber, J. B.

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
[CrossRef]

Jermann, F.

M. Simon, F. Jermann, T. R. Volk, and E. Krätzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi 149(2), 723–732 (1995).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

Kokanyan, E. P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
[CrossRef]

Kong, Y.

W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
[CrossRef]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[CrossRef]

Krätzig, E.

M. Simon, F. Jermann, T. R. Volk, and E. Krätzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi 149(2), 723–732 (1995).
[CrossRef]

Li, S.

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[CrossRef]

Liu, S.

W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
[CrossRef]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[CrossRef]

Minzioni, P.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[CrossRef]

Orlov, S. S.

Rakuljic, G. A.

Razumovski, N. V.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
[CrossRef]

Rubinina, N.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[CrossRef]

Serrano, M. D.

V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Dieguéz, “The effect of native defects on the domain structures of LiNbO3: Fe- a case study by addition of MgO and K2O to the congruent melt,” J. Phys. Condens. Matter 9(28), 6097–6101 (1997).
[CrossRef]

Shi, L.

W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
[CrossRef]

Simon, M.

M. Simon, F. Jermann, T. R. Volk, and E. Krätzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi 149(2), 723–732 (1995).
[CrossRef]

Soergel, E.

E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81(6), 729–751 (2005).
[CrossRef]

Volk, T.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[CrossRef]

Volk, T. R.

M. Simon, F. Jermann, T. R. Volk, and E. Krätzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi 149(2), 723–732 (1995).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Wöhlecke, M.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, and M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11(9), 1681–1687 (1994).
[CrossRef]

Xu, J.

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[CrossRef]

Yan, W.

W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
[CrossRef]

Yariv, A.

Zhang, G.

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[CrossRef]

Appl. Phys. B (2)

E. Soergel, “Visualization of ferroelectric domains in bulk single crystals,” Appl. Phys. B 81(6), 729–751 (2005).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: Materials,” Appl. Phys. B 64(4), 391–407 (1997).
[CrossRef]

Appl. Phys. Lett. (4)

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett. 84(11), 1880–1882 (2004).
[CrossRef]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[CrossRef]

W. Yan, H. Chen, L. Shi, S. Liu, and Y. Kong, “Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3 Fe crystals,” Appl. Phys. Lett. 90(21), 211108 (2007).
[CrossRef]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys., A Mater. Sci. Process. 60, 217–225 (1995).
[CrossRef]

R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (2)

V. Bermúdez, P. S. Dutta, M. D. Serrano, and E. Dieguéz, “The effect of native defects on the domain structures of LiNbO3: Fe- a case study by addition of MgO and K2O to the congruent melt,” J. Phys. Condens. Matter 9(28), 6097–6101 (1997).
[CrossRef]

D. Callejo, V. Bermúdez, and E. Dieguéz, “Influence of Hf ions in the formation of Periodic Poled Lithium Niobate Structures,” J. Phys. Condens. Matter 13(6), 1337–1342 (2001).
[CrossRef]

Phys. Status Solidi (1)

M. Simon, F. Jermann, T. R. Volk, and E. Krätzig, “Influence of zinc doping on the photorefractive properties of lithium niobate,” Phys. Status Solidi 149(2), 723–732 (1995).
[CrossRef]

Other (3)

A. M. Prokhorov, and Yu. S. Kuz’minov, Physics and Chemistry of Lithium Niobate, (Bristol, Hilger, 1990)

T. Volk, and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, (Springer, Berlin, 2008).

P. Günter, and J. P. Huignard, Photorefractive Materials and Their Applications, Vols. I and II, (Springer, Heidelberg, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Arrangement of the light scattering experiment. The pump beam was denoted as “P”. Another reference light (denoted as “R”) was used to monitor the drifts caused by the laser power fluctuation.

Fig. 2
Fig. 2

Temporal curves of transmitted intensity for 514nm light with different pump intensities I0 for (a) o-polarization and (b) e-polarization. The inset of (b) shows the magnified picture in the dot frame.

Fig. 3
Fig. 3

Etch patterns of the C-cut surface of the sample with fog-like “defects”, where the etching was carried out in HF acid at 70°C for 5 min.

Fig. 4
Fig. 4

Mechanism sketch for the “defects” removal by the visible light illumination and for the sample status change after the quick heating-up. Thickness of the arrows represents the polarization magnitude of domains. The compensation effect of mobile H+ is omitted in this sketch.

Fig. 5
Fig. 5

Photographs of sample a) before and b) after the quick heating-up, where the green beam for probe has been expanded with week intensity of 1mw/cm2.

Metrics