Abstract

We demonstrate a liquid droplet whose surface profile can be reshaped by voltage. As the dielectric force increases, the dome of a liquid droplet could touch the top substrate and become flat. While the voltage is removed, the droplet recovers to its original spherical shape. By choosing proper liquids, the required voltage for such a shape change is relatively low and the transition speed is fast. Potential application of such a deformable droplet for optical beam control is discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
    [CrossRef] [PubMed]
  2. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
    [CrossRef] [PubMed]
  3. V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002).
    [PubMed]
  4. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [CrossRef] [PubMed]
  5. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010).
    [CrossRef] [PubMed]
  6. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [CrossRef] [PubMed]
  7. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [CrossRef] [PubMed]
  8. S. H. Cho, F. S. Tsai, W. Qiao, N. H. Kim, and Y. H. Lo, “Fabrication of aspherical polymer lenses using a tunable liquid-filled mold,” Opt. Lett. 34(5), 605–607 (2009).
    [CrossRef] [PubMed]
  9. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
    [CrossRef] [PubMed]
  10. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
    [CrossRef]
  11. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
    [CrossRef] [PubMed]
  12. B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [CrossRef]
  13. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
    [CrossRef] [PubMed]
  14. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [CrossRef]
  15. S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  16. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [CrossRef] [PubMed]
  17. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  18. H. Ren, D. Ren, and S. T. Wu, “A new method for fabricating high density and large aperture ratio liquid microlens array,” Opt. Express 17(26), 24183–24188 (2009).
    [CrossRef]
  19. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]
  20. H. Ren, S. H. Lee, and S. T. Wu, “Reconfigurable liquid crystal droplet using a dielectric force,” Appl. Phys. Lett. 95(24), 241108 (2009).
    [CrossRef]
  21. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).

2010

2009

2008

2007

2006

2004

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

2003

2002

2000

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

1999

1994

Asatryan, K. E.

Baer, E.

Beadie, G.

Berge, B.

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Chang, C. A.

Cheng, C. C.

Cho, S. H.

Chronis, N.

De Nicola, S.

Dejule, M. C.

Dodge, M. R.

Draheim, J.

Ferraro, P.

Finizio, A.

Galstian, T. V.

Grilli, S.

Hendriks, H. W.

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Hiltner, A.

Jeong, K. H.

Jiang, H.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Kamberger, R.

Kazmierczak, T.

Kim, N. H.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Lee, L. P.

Lee, S. H.

H. Ren, S. H. Lee, and S. T. Wu, “Reconfigurable liquid crystal droplet using a dielectric force,” Appl. Phys. Lett. 95(24), 241108 (2009).
[CrossRef]

Lepkowicz, R. S.

Li, C.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Lin, Y. J.

Liu, G. L.

Lo, Y. H.

Loktev, M. Yu.

Love, G. D.

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Mathine, D. L.

Miccio, L.

Naumov, A. F.

Peseux, J.

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Peyghambarian, N.

Peyman, G.

Ponting, M.

Presnyakov, V. V.

Qiao, W.

Ren, D.

Ren, H.

Riza, N. A.

Sandrock, M. L.

Schneider, F.

Schwiegerling, J.

Shirk, J. S.

Tork, A.

Tsai, F. S.

Valley, P.

Vespini, V.

Vladimirov, F. L.

Waibel, P.

Wallrabe, U.

Wiggins, M. J.

Wu, S. T.

Xianyu, H.

Xu, S.

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Yang, Y.

Yeh, J. A.

Zeng, X.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Zhu, D.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Appl. Phys. Lett.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

H. Ren, S. H. Lee, and S. T. Wu, “Reconfigurable liquid crystal droplet using a dielectric force,” Appl. Phys. Lett. 95(24), 241108 (2009).
[CrossRef]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Eur. Phys. J. E

B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Opt. Express

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009).
[CrossRef] [PubMed]

H. Ren, D. Ren, and S. T. Wu, “A new method for fabricating high density and large aperture ratio liquid microlens array,” Opt. Express 17(26), 24183–24188 (2009).
[CrossRef]

A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
[CrossRef] [PubMed]

V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002).
[PubMed]

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[CrossRef] [PubMed]

C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[CrossRef] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Other

P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).

Supplementary Material (1)

» Media 1: MPG (3400 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Structure of the droplet cell and the operation mechanisms: (a) side-view structure at V = 0, (b) the dome of the droplet touching the top substrate surface with a voltage, (c) flat top surface, and (d) voltage is removed.

Fig. 2
Fig. 2

Dielectric force and interfacial tensions for the balanced force analysis.

Fig. 3
Fig. 3

The dome of the droplet with two different geometric shapes: (a) spherical shape in the voltage-off state, and (b) flat shape in a voltage-on state

Fig. 4
Fig. 4

Glycerol liquid droplets observed through an optical microscope: (a) focusing on droplet surfaces, (b) their imaging performance, and (c) focusing on the droplet surfaces at 15 Vrms

Fig. 5
Fig. 5

The 2D images on the surface of droplet-2: (a) V = 0, (b) V = 16 Vrms, and (c) V = 30 Vrms.

Fig. 6
Fig. 6

Measured voltage-dependent transmittance of droplet-2 and droplet-3.

Fig. 7
Fig. 7

Measured light intensity change of droplet-2 with time in two cycles.

Fig. 8
Fig. 8

Dynamic driving of two different droplets (Media 1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ L 1 , L 2 cos θ = γ L 1 , D 1 γ L 2 , D 1 ,
F d = 1 2 ε 0 ( ε 1 ε 2 ) ( E E ) ,
γ L 1 , D 2 = γ L 2 , D 2 γ L 1 , L 2 cos φ + F d x ,

Metrics