Abstract

An ultra-broadband wavelength conversion is presented and experimentally demonstrated based on nondegenerate four-wave mixing in silicon waveguides. Two idlers can be generated and their wavelengths can be freely tuned by using two pumps where the first pump is set close to the signal and the second pump is wavelength tunable. Using this scheme, a small phase-mismatch and hence an ultra-broad conversion bandwidth is realized in spite of the waveguide dispersion profile. We show that the experimental demonstrations are consistent with the theoretical estimations. Total conversion bandwidth is estimated to reach >500 nm and it can provide a feasible approach to realize one-to-two wavelength conversion among different telecommunication bands between 1300 nm and 1800 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  2. M. Nakamura, H. Ueda, S. Makino, T. Yokotani, and K. Oshima, “Proposal of networking by PON technologies for full Ethernet services in FTTx,” J. Lightwave Technol. 22(11), 2631–2640 (2004).
    [CrossRef]
  3. S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004).
    [CrossRef]
  4. R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
    [CrossRef]
  5. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
    [CrossRef]
  6. Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
    [CrossRef]
  7. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-3-1182 .
    [CrossRef] [PubMed]
  8. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
    [CrossRef]
  9. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
    [CrossRef]
  10. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-12-4629 .
    [CrossRef] [PubMed]
  11. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-11-4786 .
    [CrossRef] [PubMed]
  12. X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
    [CrossRef]
  13. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-10-4357 .
    [CrossRef] [PubMed]
  14. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-18-3-1904 .
    [CrossRef] [PubMed]
  15. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33(24), 2889–2891 (2008).
    [CrossRef] [PubMed]

2010 (2)

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-18-3-1904 .
[CrossRef] [PubMed]

2009 (2)

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

2008 (1)

2006 (6)

H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14(3), 1182–1188 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-3-1182 .
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-10-4357 .
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-14-11-4786 .
[CrossRef] [PubMed]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
[CrossRef]

2005 (1)

2004 (2)

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004).
[CrossRef]

M. Nakamura, H. Ueda, S. Makino, T. Yokotani, and K. Oshima, “Proposal of networking by PON technologies for full Ethernet services in FTTx,” J. Lightwave Technol. 22(11), 2631–2640 (2004).
[CrossRef]

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Agrawal, G. P.

Alic, N.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Bergman, K.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Bock, P. J.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
[CrossRef]

Chen, X.

Cohen, O.

Dadap, J. I.

Fainman, Y.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Fauchet, P. M.

Ford, J.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Foster, M. A.

Fukuda, H.

Gaeta, A. L.

Gao, S.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004).
[CrossRef]

Green, W. M. J.

Hall, T. J.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
[CrossRef]

He, S.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Hsieh, I.-W.

Itabashi, S.

Jiang, R.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Jin, G.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004).
[CrossRef]

Kuo, Y.-H.

Lee, B. G.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Li, Z.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

Lin, Q.

Lipson, M.

Liu, A.

Liu, J. R.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
[CrossRef]

Liu, X.

Lu, Z. G.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
[CrossRef]

Makino, S.

Manolatou, C.

McKinstrie, C.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Nakamura, M.

Nezhad, M.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Osgood, R. M.

Oshima, K.

Paniccia, M.

Radic, S.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Rong, H.

Salem, R.

Saperstein, R.

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

Schmidt, B. S.

Sharping, J. E.

Shoji, T.

Sun, F. G.

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
[CrossRef]

Takahashi, J.

Takahashi, M.

Tian, Y.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Tsuchizawa, T.

Turner, A. C.

Turner-Foster, A. C.

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-18-3-1904 .
[CrossRef] [PubMed]

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

Ueda, H.

Vlasov, Y. A.

Watanabe, T.

Xiao, X.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Yamada, K.

Yang, C.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004).
[CrossRef]

Yokotani, T.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

You, Z.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Zhang, J.

Zhang, X.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Electron. Lett. (1)

Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun, and T. J. Hall, “All-optical 1550 to 1310 nm wavelength converter,” Electron. Lett. 42(16), 937–938 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 250–256 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009).
[CrossRef]

S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16(2), 557–559 (2004).
[CrossRef]

R. Jiang, R. Saperstein, N. Alic, M. Nezhad, C. McKinstrie, J. Ford, Y. Fainman, and S. Radic, “Parametric wavelength conversion from conventional near-infrared to visible band,” IEEE Photon. Technol. Lett. 18(23), 2445–2447 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Prog. Electromagn. Res. (1)

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of ultra-broadband one-to-two wavelength conversion based on nondegenerate FWM.

Fig. 2
Fig. 2

Calculated phase mismatch and conversion efficiency for the two generated idlers in 300 × 500 nm2, 300 × 650 nm2, 285 × 650 nm2, and 3 × 3 μm2 silicon waveguides. (a) I 1 phase mismatch; (b) I 1 conversion efficiency; (c) I 2 phase mismatch; (d) I 2 conversion efficiency.

Fig. 3
Fig. 3

Simulation results of (a) the phase mismatch and (b) the conversion efficiency of the idler I 1 for different signal wavelengths as the pump P 2 scans and the pump P 1 is fixed at 1543.73 nm.

Fig. 4
Fig. 4

Experimental setup for ultra-broadband one-to-two wavelength conversion.

Fig. 5
Fig. 5

Measured optical spectra for the signal at 1542.83 nm or 1542.05 nm when the pump P 1 is set at 1543.64 nm. (a) The pump P 1 and the 1542.83-nm signal; (b)-(d) the pump P 2 and the generated idlers I 1,2 when the pump P 2 is at 1560 nm, 1595 nm, and 1630 nm corresponding to (a); (e) the pump P 1 and the 1542.05-nm signal; (f)-(h) the pump P 2 and the generated idlers I 1,2 when the pump P 2 is at 1560 nm, 1595 nm, and 1630 nm corresponding to (e).

Fig. 6
Fig. 6

Measured unit conversion efficiencies of the two idlers and their fitting curves as the pump P 2 scans for the 1542.83-nm and 1542.05-nm signals that have 0.8-nm and 1.6-nm spacing with the pump P 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ 1 = β P 1 β S + β I 1 β P 2 + ( 2 π n 2 f P 1 / c ) I P 1 + ( 2 π n 2 f P 2 / c ) I P 2
κ 2 = β S β P 1 + β I 2 β P 2 + ( 2 π n 2 f P 1 / c ) I P 1 + ( 2 π n 2 f P 2 / c ) I P 2

Metrics