Abstract

Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 µm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008).
    [CrossRef]
  2. M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors 7(12), 3100–3118 (2007).
    [CrossRef]
  3. B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications- a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
    [CrossRef]
  4. I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
    [CrossRef]
  5. S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009).
    [CrossRef]
  6. X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
    [CrossRef]
  7. A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
    [CrossRef]
  8. P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).
  9. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
    [CrossRef] [PubMed]
  10. Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Opt. Express 16(14), 10254–10268 (2008).
    [CrossRef] [PubMed]
  11. N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
    [CrossRef]
  12. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008).
    [CrossRef] [PubMed]
  13. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [CrossRef] [PubMed]
  14. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
    [CrossRef]
  15. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
    [CrossRef] [PubMed]
  16. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
    [CrossRef]
  17. B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicate materials in sensing,” Sensors 8(8), 5202–5228 (2008).
    [CrossRef]
  18. J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano 2(11), 2324–2330 (2008).
    [CrossRef]
  19. M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000).
    [CrossRef]
  20. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
    [CrossRef]
  21. D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
    [CrossRef] [PubMed]
  22. P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
    [CrossRef] [PubMed]
  23. Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
    [CrossRef] [PubMed]
  24. P. Atkins, and J. de Paula, Atkins, Physical Chemistry, 7th ed. (Oxford Univ. Press, 2002).

2010 (1)

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

2009 (7)

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009).
[CrossRef]

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[CrossRef] [PubMed]

2008 (9)

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
[CrossRef] [PubMed]

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008).
[CrossRef]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Opt. Express 16(14), 10254–10268 (2008).
[CrossRef] [PubMed]

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008).
[CrossRef] [PubMed]

P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).

B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicate materials in sensing,” Sensors 8(8), 5202–5228 (2008).
[CrossRef]

J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano 2(11), 2324–2330 (2008).
[CrossRef]

2007 (1)

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors 7(12), 3100–3118 (2007).
[CrossRef]

2005 (1)

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications- a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

2004 (2)

X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

2003 (1)

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
[CrossRef] [PubMed]

2000 (1)

M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000).
[CrossRef]

Abu-Yousef, I. A.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009).
[CrossRef]

Airoudj, A.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008).
[CrossRef]

Baets, R.

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Baklanov, M. R.

M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000).
[CrossRef]

Bansal, L.

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors 7(12), 3100–3118 (2007).
[CrossRef]

Bêche, B.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008).
[CrossRef]

Becker, T.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bein, T.

J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano 2(11), 2324–2330 (2008).
[CrossRef]

Berg, A.

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications- a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Bienstman, P.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Boagerts, W.

P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).

Bogaerts, W.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Brimont, A.

Capone, S.

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

Charles, P. T.

B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicate materials in sensing,” Sensors 8(8), 5202–5228 (2008).
[CrossRef]

Chen, L.

Chen, X.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Cheng, X. L.

X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
[CrossRef]

Claes, T.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

De Vos, K.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Debarnot, D.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008).
[CrossRef]

Debliquy, M.

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

Dhar, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

Dong, F.

Dultsev, F. N.

M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000).
[CrossRef]

Dumon, P.

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

El-Kadri, O. M.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009).
[CrossRef]

Elmi, I.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

El-Sherif, M.

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors 7(12), 3100–3118 (2007).
[CrossRef]

Fan, X.

Fedeli, J. M.

Fedili, J.-M.

P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).

Forleo, A.

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

Francioso, L.

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

Gamelin, D. R.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
[CrossRef] [PubMed]

Gao, S.

X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
[CrossRef]

Gardes, F. Y.

Helwig, A.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

Hens, Z.

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
[CrossRef] [PubMed]

Huo, L. H.

X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
[CrossRef]

Jaenen, P.

Johnson, B. J.

B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicate materials in sensing,” Sensors 8(8), 5202–5228 (2008).
[CrossRef]

Jokerst, N.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

Kanan, M. C.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009).
[CrossRef]

Kanan, S. M.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009).
[CrossRef]

Kobler, J.

J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano 2(11), 2324–2330 (2008).
[CrossRef]

Krauss, T. F.

Lahem, D.

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

Lipson, M.

Lommens, P.

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
[CrossRef] [PubMed]

Luan, L.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Marco, S. M.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

Marris-Morini, D.

Martí, J.

Melde, B. J.

B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicate materials in sensing,” Sensors 8(8), 5202–5228 (2008).
[CrossRef]

Mogilnikov, K. P.

M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000).
[CrossRef]

Molera, J. G.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Muller, G.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

Nguyen, Q. P.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
[CrossRef] [PubMed]

Nitkowski, A.

Norberg, N. S.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
[CrossRef] [PubMed]

O’Faolain, L.

Olthuis, W.

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications- a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Padilla, M.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

Palit, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

Parker, J. M.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
[CrossRef] [PubMed]

Poelman, D.

P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
[CrossRef] [PubMed]

Polovinkin, V. G.

M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000).
[CrossRef]

Poncin-Epaillard, F.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008).
[CrossRef]

Rasigade, G.

Reed, G. T.

Robinson, J. T.

Roels, J.

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

Royal, M.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

Sanchis, P.

Schacht, E.

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

Schwartz, D. A.

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
[CrossRef] [PubMed]

Selvaraja, S. K.

Siciliano, P.

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

Smet, P. F.

P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
[CrossRef] [PubMed]

Sun, Y.

Syhan, I.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

Taillaert, D.

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Tchelnokov, A.

P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).

Timmer, B.

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications- a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Tyler, T.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Van Thourhout, D.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Vivien, L.

Wang, Y.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Xu, D.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Yang, Z.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Yebo, N.

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

Yuan, J.

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors 7(12), 3100–3118 (2007).
[CrossRef]

Zampolli, S.

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

Zhang, Y.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Zhao, H.

X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
[CrossRef]

Zhao, J. G.

X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
[CrossRef]

Zhou, Z.

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

J. Kobler and T. Bein, “Porous thin films of functionalized mesoporous silica nanoparticles,” ACS Nano 2(11), 2324–2330 (2008).
[CrossRef]

Anal. Chem. (1)

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “Design and sensing properties of an integrated optical gas sensor based on a multilayer structure,” Anal. Chem. 80(23), 9188–9194 (2008).
[CrossRef]

Future Fab. International (1)

P. Dumon, W. Boagerts, A. Tchelnokov, J.-M. Fedili, and R. Baets, “Silicon nanophotonics,” Future Fab. International 25, 29–36 (2008).

IEEE Photon. Technol. Lett. (2)

N. Yebo, D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. van Thourhout, and R. Baets, “Silicon-on-insulator (SOI) ring resonator based integrated optical hydrogen sensor,” IEEE Photon. Technol. Lett. 21(14), 960–962 (2009).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

IEEE Photonics J. (1)

T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot –waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
[CrossRef]

IEEE Sens. J. (1)

I. Syhan, A. Helwig, T. Becker, G. Muller, I. Elmi, S. Zampolli, M. Padilla, and S. M. Marco, “Discontinuously operated metal oxide gas sensors for flexible tag microlab applications,” IEEE Sens. J. 8(2), 176–181 (2008).
[CrossRef]

J Biophotonics (1)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker, and D. R. Gamelin, “Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals,” J. Am. Chem. Soc. 125(43), 13205–13218 (2003).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18(3), 1385–1391 (2000).
[CrossRef]

Nanotechnology (2)

P. Lommens, D. Van Thourhout, P. F. Smet, D. Poelman, and Z. Hens, “Electrophoretic deposition of ZnO nanoparticles: from micropatterns to substrate coverage,” Nanotechnology 19(24), 245301 (2008).
[CrossRef] [PubMed]

Y. Wang, Z. Zhou, Z. Yang, X. Chen, D. Xu, and Y. Zhang, “Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection,” Nanotechnology 20(34), 345502 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Sens. Actuators (1)

X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing properties,” Sens. Actuators 102(2), 248–252 (2004).
[CrossRef]

Sens. Actuators B Chem. (2)

A. Forleo, L. Francioso, S. Capone, P. Siciliano, P. Lommens, and Z. Hens, “Synthesis and gas sensing properties of ZnO quantum dots,” Sens. Actuators B Chem. 146(1), 111–115 (2010).
[CrossRef]

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications- a review,” Sens. Actuators B Chem. 107(2), 666–677 (2005).
[CrossRef]

Sensors (3)

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors 9(10), 8158–8196 (2009).
[CrossRef]

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors 7(12), 3100–3118 (2007).
[CrossRef]

B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicate materials in sensing,” Sensors 8(8), 5202–5228 (2008).
[CrossRef]

Other (1)

P. Atkins, and J. de Paula, Atkins, Physical Chemistry, 7th ed. (Oxford Univ. Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A scanning electron microscope (SEM) image of an SOI MRR of 5µm radius. (b) Cross section view of the SOI ethanol sensor structure. (c) TE mode electric field profile of a 450nm wide and 220nm high SOI waveguide with ZnO cladding, simulated with COMSOL Multiphysics.

Fig. 2
Fig. 2

(a) SEM cross section view of a drop casted ZnO film on an SOI sample. (b) SEM image showing the top view of the ZnO film. (c) Optical microscope image of a rectangular ZnO nanparticle coating covering four pairs of closely situated SOI MRRs, with an indication of the coating and the MRRs.

Fig. 3
Fig. 3

(a). Schematic representation of the experimental setup; the optical chip containing the MRR ethanol sensor is kept in a gas chamber. A transparent glass window seals the top side of the chamber. Light is coupled in and out of the chip vertically through the window. (b). Schematic view of the MRR with the grating couplers that are used to couple light in and out of the MRR.

Fig. 4
Fig. 4

(a). Measured transmission spectrum of the sensor as a function of ethanol vapor concentration. (b). The corresponding measured resonance shift at different vapor concentrations; the solid curve represents a best fit to a Langmuir isotherm.

Fig. 5
Fig. 5

Temporal response of the sensor for one on-off cycle upon exposure to 300 ppm ethanol. The solid lines are fits of the rising and falling edges of the response to exponentials. The dashed line shows the switching between 0 and 300 ppm ethanol.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n λ = n e f f ( n s , λ ) × L .
Δ λ λ = n e f f n s | λ Δ n s n g .
L e f f = Γ Q λ 2 π n g .
Δ λ λ = n e f f n s | λ Δ n s n g = Γ Δ n c o a t i n g n g .
Δ λ = Δ λ max K p EtOH 1 + K p EtOH = Δ λ max K c EtOH 10 6 + K c EtOH .

Metrics