Abstract

The design, fabrication, and characterization of an integrated 2D photonic crystal stack are described for application as optical filters with improved optical density and angle tolerance compared to single photonic crystal slabs. The 2D photonic crystals are designed as polarization independent reflectance filters with a narrow spectral bandwidth centered at λ = 532 nm by utilizing the guided mode resonance effect. Up to three photonic crystal layers are vertically stacked upon a single plastic substrate by using repeated nanoreplica molding process steps, with no alignment required between stacked layers. The photonic crystal stack filters achieve optical density of 2.24 with an angular tolerance of 14.8 degrees.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
    [CrossRef]
  2. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
    [CrossRef]
  3. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
    [CrossRef]
  4. N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
    [CrossRef]
  5. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
    [CrossRef] [PubMed]
  6. L. F. DeSandre and J. M. Elson, “Extinction-Theorem Analysis of Diffraction Anomalies in Overcoated Gratings,” J. Opt. Soc. Am. A 8(5), 763–777 (1991).
    [CrossRef]
  7. A. Hessel and A. A. Oliner, “A New Theory of Wood's Anomalies on Optical Gratings,” Appl. Opt. 4(10), 1275 (1965).
    [CrossRef]
  8. M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of Resonances of Holographic Thin Film Couplers,” Opt. Commun. 9(1), 48–53 (1973).
    [CrossRef]
  9. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
    [CrossRef]
  10. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [CrossRef]
  11. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
    [CrossRef] [PubMed]
  12. T. K. Lee, A. D. Bristow, J. Hubner, and H. M. van Driel, “Linear and nonlinear optical properties of Au-polymer metallodielectric Bragg stacks,” J. Opt. Soc. Am. B 23(10), 2142–2147 (2006).
    [CrossRef]
  13. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
    [CrossRef] [PubMed]
  14. I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
    [CrossRef]
  15. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
    [CrossRef]
  16. F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
    [CrossRef]
  17. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
    [CrossRef]
  18. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
    [CrossRef]
  19. B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
    [CrossRef]
  20. M. J. Grout, “Application of bacteriorhodopsin for optical limiting eye protection filters,” Opt. Mater. 14(2), 155–160 (2000).
    [CrossRef]
  21. M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
    [CrossRef]
  22. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [CrossRef]
  23. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
    [CrossRef]
  24. V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
    [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics, 3 ed. (Roberts & Company, Englewood, 2005).
  26. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17(7), 1221–1230 (2000).
    [CrossRef]
  27. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998).
    [CrossRef]

2008

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

2007

N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[CrossRef]

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

2006

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

T. K. Lee, A. D. Bristow, J. Hubner, and H. M. van Driel, “Linear and nonlinear optical properties of Au-polymer metallodielectric Bragg stacks,” J. Opt. Soc. Am. B 23(10), 2142–2147 (2006).
[CrossRef]

2004

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
[CrossRef] [PubMed]

2002

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

2001

2000

1998

1997

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

1991

1973

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of Resonances of Holographic Thin Film Couplers,” Opt. Commun. 9(1), 48–53 (1973).
[CrossRef]

1965

Adawi, A. M.

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

Astratov, V. N.

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

Beltran, N. B.

N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
[CrossRef]

Bendickson, J. M.

Bennink, R. S.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
[CrossRef] [PubMed]

Block, I. D.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Boyd, R. W.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
[CrossRef] [PubMed]

Bristow, A. D.

Brundrett, D. L.

Cadilhac, M.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of Resonances of Holographic Thin Film Couplers,” Opt. Commun. 9(1), 48–53 (1973).
[CrossRef]

Chan, L. L.

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Chang-Hasnain, C. J.

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[CrossRef]

Chen, M.

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

Cunningham, B.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Cunningham, B. T.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

DeSandre, L. F.

Dobbs, D. W.

N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
[CrossRef]

Elson, J. M.

Fricker, S.

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Ganesh, N.

N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt. 46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

Gaylord, T. K.

Giovannini, H.

Glytsis, E. N.

Grout, M. J.

M. J. Grout, “Application of bacteriorhodopsin for optical limiting eye protection filters,” Opt. Mater. 14(2), 155–160 (2000).
[CrossRef]

Hessel, A.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[CrossRef]

Hubner, J.

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

Kern, J.

Lee, T. K.

Lemarchand, F.

Lepeshkin, N. N.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
[CrossRef] [PubMed]

Li, C. F.

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

Li, P.

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Ma, S. J.

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

Magnusson, R.

Mathias, P. C.

Moewe, M.

Neviere, M.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of Resonances of Holographic Thin Film Couplers,” Opt. Commun. 9(1), 48–53 (1973).
[CrossRef]

Oliner, A. A.

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Petit, R.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of Resonances of Holographic Thin Film Couplers,” Opt. Commun. 9(1), 48–53 (1973).
[CrossRef]

Piredda, G.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
[CrossRef] [PubMed]

Pusey, P. N.

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

Rasigade, G.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Schweinsberg, A.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
[CrossRef] [PubMed]

Sentenac, A.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Skolnick, M. S.

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

Soares, J. A. N. T.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

Tibuleac, S.

van Driel, H. M.

Vincent, P.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of Resonances of Holographic Thin Film Couplers,” Opt. Commun. 9(1), 48–53 (1973).
[CrossRef]

Wang, W. B.

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

Whittaker, D. M.

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

Xia, Y. X.

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

Xiang, A.

N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
[CrossRef]

Xu, M.

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

Yang, F.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[CrossRef]

Yen, G.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Appl. Phys. Lett. 90(8), 081103 (2007).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[CrossRef]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett. 92(9), 091115 (2008).
[CrossRef]

IEEE J. Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Microelectron. Eng.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(5), 297 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Opt. Commun.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic Study of Resonances of Holographic Thin Film Couplers,” Opt. Commun. 9(1), 48–53 (1973).
[CrossRef]

Opt. Express

Opt. Laser Technol.

M. Chen, C. F. Li, M. Xu, W. B. Wang, S. J. Ma, and Y. X. Xia, “Eye-protection glasses against YAG laser injury based on the band gap reflection of one-dimensional photonic crystal,” Opt. Laser Technol. 39(1), 214–218 (2007).
[CrossRef]

Opt. Lett.

Opt. Mater.

M. J. Grout, “Application of bacteriorhodopsin for optical limiting eye protection filters,” Opt. Mater. 14(2), 155–160 (2000).
[CrossRef]

Phys. Rev. B

V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals,” Phys. Rev. B 66(16), 165215 (2002).
[CrossRef]

Phys. Rev. Lett.

N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93(12), 123902 (2004).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002).
[CrossRef]

B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B Chem. 87(2), 365–370 (2002).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, 3 ed. (Roberts & Company, Englewood, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) SEM view of the nanoreplica mold from a 2D square lattice photonic crystal silicon master. The master is comprised of posts resulting in a nanoreplica mold of 2D square lattice of holes. (b) AFM section view of nanorpelica mold showing a period of 300 nm and hole depth of approximately 150 nm.

Fig. 2
Fig. 2

(a) Cross section schematic view of a 3 PC stack filter with 300nm period, hole depth of 150 nm, and TiO2 thickness of 67 nm. A single filter would consist of layers 1, 2, and 3 in the schematic. The schematic cross section is not to scale, as the UVCP layers (layers 1, 3, and 5) are each ~5 μm thick, and the PET substrate is ~250 μm thick . (b) Top view of the 2D PC filter with corresponding directions of the Brillouin zone with respect to the lattice vectors.

Fig. 3
Fig. 3

Schematic of the in situ reflection spectrum monitoring system. The low vacuum environment is inside the dashed box. In one leg of the bifurcated optical fiber, incident light is illuminated onto the device through a collimator and lens optical system. The reflected light is collected through the same optics and sent to the other leg of the optical fiber, where it is measured with a spectrometer.

Fig. 4
Fig. 4

Setup used to acquire the transmission spectrum of the PC stack filter during different stages of the fabrication process. Broadband light from a tungsten halogen lamp is incident on the device and the transmitted light is collected and analyzed using a spectrometer.

Fig. 5
Fig. 5

(a) OD spectrum of a PC stack filter during the fabrication process with the filter comprising N = 1 (blue line), N = 2(red line), and N = 3 (black line) PC filters. OD increases from 1.45 to 2.24 by stacking 3 PC filters. (b) OD spectrum of 3 discrete PC filters with 1 (blue line), 2(red line), and 3 (black line) PC filters in the optical transmission pathway. The OD increases from 1.61 to 2.58.

Fig. 6
Fig. 6

OD Spectrum of a 2 PC stack filter. The center wavelengths of the two different layers are intentionally offset by 2 nm in order to increase the angular tolerance of the reflectance filter.

Fig. 7
Fig. 7

Band diagram of the 2D PC filter in the Г-Χ (plots a & b) and Г-Μ (plots c & d) directions. Color scale represents 0% transmission (blue) to 100% transmission (red). The Г-Χ band diagram has a flat band effect that is clearly not seen in the Г-Μ direction. The reference device (plots b & d) has smaller angular FWHM than the stack PC filter (plots a & c) due to its smaller resonance line width that is seen in the band diagram.

Fig. 8
Fig. 8

Angular transmission response of a 2 PC stack filter (blue) and control PC filter (red) at the center wavelength. (a) Γ-Μ direction response showing improved angular tolerance for the 2 PC stack filter. (b) Γ-Χ direction response showing improved angular tolerance for the 2 PC stack filter.

Fig. 9
Fig. 9

Comparison between theory and experimental data for increase in OD as a function of number of PC filters in a stack. The experimental results are lower than the predicted values and show a diminishing increase in OD with additional PC filters incorporated into the stack.

Fig. 10
Fig. 10

OD spectrum of a 2D PC filter when the incident has been transmitted through 0 (blue line), 1 (red line), and 2 (black line) PC filters before reaching the current PC filter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

O D n = log 10 ( T n T o ) = n log 10 ( T T o ) = n O D 1

Metrics