Abstract

Numerical simulations and an analytic approach based on transmission line theory are used to design splitters for nano-plasmonic signal processing that allow to arbitrarily adjust the ratio of transmission from an input into two different output arms. By adjusting the geometrical parameters of the structure, either a high bandwidth or a sharp transmission resonance is obtained. Switching between the two arms can be achieved by modulating the effective refractive index of the waveguide. Employing the instantaneous Kerr effect, switching rates in the THz regime are potentially feasible. The suggested devices are of interest for future applications in nanoplasmonic information processing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  6. M. Sukharev, and T. Seideman, “Coherent control of light propagation via nanoparticle arrays,” J. Phys. B 40, 283–298 (2007).
    [CrossRef]
  7. P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
    [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
    [CrossRef] [PubMed]
  9. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
    [CrossRef] [PubMed]
  10. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
    [CrossRef] [PubMed]
  11. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
    [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  13. D. J. Bergman, and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  14. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
    [CrossRef] [PubMed]
  15. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
    [CrossRef] [PubMed]
  16. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
    [CrossRef]
  17. G. Veronis, and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  18. A. V. Krasavin, and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  19. Z. Han, and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278, 199–203 (2007).
    [CrossRef]
  20. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16, 14369–14379 (2008).
    [CrossRef] [PubMed]
  21. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
    [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  23. Z. Kang, and G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters,” Opt. Express 16, 7680–7685 (2008).
    [CrossRef] [PubMed]
  24. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).
    [CrossRef] [PubMed]
  25. C. Min, and G. Veronis, “Absorption switches in metal–dielectric–metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
    [CrossRef] [PubMed]
  26. W. Cai, J. S. White, and M. L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators,” Nano Lett. 9, 4403–4411 (2009).
    [CrossRef] [PubMed]
  27. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent Control of Femtosecond Energy Localization in Nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
    [CrossRef] [PubMed]
  28. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
    [CrossRef] [PubMed]
  29. J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
    [CrossRef]
  30. W. H. A. Schilders, P. G. Ciarlet, J. Lions, and E. J. W. T. Maten, Numerical Methods in Electromagnetics (Elsevier, 2005).
  31. U. Inan, and A. Inan, Engineering electromagnetics (Addison-Wesley, 1999).
  32. Lumerical FDTD solutions, version 6; www.lumerical.com
  33. E. D. Palik, and G. Ghosh, Handbook of optical constants of solids (Academic Press, 1985).
  34. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
    [CrossRef]
  35. R. Trebino, Frequency-resolved optical gating: The measurement of ultrashort laser pulses (Kluwer Academic Publishers, 2000).
  36. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [CrossRef]
  37. J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998).
    [CrossRef]
  38. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef] [PubMed]

2009

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators,” Nano Lett. 9, 4403–4411 (2009).
[CrossRef] [PubMed]

C. Min, and G. Veronis, “Absorption switches in metal–dielectric–metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[CrossRef] [PubMed]

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

2008

S. I. Bozhevolnyi, and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

Z. Kang, and G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters,” Opt. Express 16, 7680–7685 (2008).
[CrossRef] [PubMed]

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16, 14369–14379 (2008).
[CrossRef] [PubMed]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

2007

M. Sukharev, and T. Seideman, “Coherent control of light propagation via nanoparticle arrays,” J. Phys. B 40, 283–298 (2007).
[CrossRef]

A. V. Krasavin, and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Z. Han, and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278, 199–203 (2007).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

2006

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

2005

G. Veronis, and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

2003

D. J. Bergman, and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent Control of Femtosecond Energy Localization in Nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

2001

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

2000

1998

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Aggarwal, I. D.

Ambati, M.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Aussenegg, F. R.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Bergman, D. J.

D. J. Bergman, and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent Control of Femtosecond Energy Localization in Nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Biagioni, P.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Bozhevolnyi, S. L.

E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Brixner, T.

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators,” Nano Lett. 9, 4403–4411 (2009).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators,” Nano Lett. 9, 4403–4411 (2009).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Cheong, S.-W.

Chichkov, B.

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent Control of Femtosecond Energy Localization in Nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Fan, S.

G. Veronis, and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Feichtner, T.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Fukui, M.

García de Abajo, F. J.

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Güdde, J.

J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998).
[CrossRef]

Han, Z.

Z. Han, and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278, 199–203 (2007).
[CrossRef]

Haraguchi, M.

He, S.

Z. Han, and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278, 199–203 (2007).
[CrossRef]

Hecht, B.

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
[CrossRef]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Hohlfeld, J.

J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998).
[CrossRef]

Huang, J. S.

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
[CrossRef]

Huang, J.-S.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

Hwang, H. Y.

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Jung, J.

Kang, Z.

Katsufuji, T.

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kiyan, R.

Krasavin, A. V.

A. V. Krasavin, and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Krenn, J. R.

Kuipers, L.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef] [PubMed]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Laluet, J.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Leitner, A.

Lenz, G.

Lines, M. E.

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

Matsuzaki, Y.

Matthias, E.

J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998).
[CrossRef]

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Min, C.

Moreno, E.

E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Müller, J. G.

J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998).
[CrossRef]

Nakagaki, M.

Nam, S. H.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

Ohrt, C.

Okamoto, T.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Passinger, S.

Pfeiffer, W.

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Podolskiy, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef] [PubMed]

Quinten, M.

Reinhardt, C.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Rewitz, C.

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Sanghera, J. S.

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Seidel, A.

Seideman, T.

M. Sukharev, and T. Seideman, “Coherent control of light propagation via nanoparticle arrays,” J. Phys. B 40, 283–298 (2007).
[CrossRef]

Slusher, R. E.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Spälter, S.

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Stepanov, A.

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

D. J. Bergman, and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent Control of Femtosecond Energy Localization in Nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Sukharev, M.

M. Sukharev, and T. Seideman, “Coherent control of light propagation via nanoparticle arrays,” J. Phys. B 40, 283–298 (2007).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Tuchscherer, P.

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
[CrossRef]

Ulin-Avila, E.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

Verhagen, E.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef] [PubMed]

Veronis, G.

C. Min, and G. Veronis, “Absorption switches in metal–dielectric–metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[CrossRef] [PubMed]

G. Veronis, and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Voronine, D. V.

P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. García de Abajo, W. Pfeiffer, and T. Brixner, “Analytic coherent control of plasmon propagation in nanostructures,” Opt. Express 17, 14235–14259 (2009).
[CrossRef] [PubMed]

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
[CrossRef]

Wang, G. P.

Weeber, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators,” Nano Lett. 9, 4403–4411 (2009).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Krasavin, and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Zhang, X.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Zimmermann, J.

Adv. Mater.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics-A Route to Nanoscale Optical Devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Appl. Phys. Lett.

G. Veronis, and S. Fan, “Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

A. V. Krasavin, and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Appl. Surf. Sci.

J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias, “Damage threshold dependence on electron-phonon coupling in Au and Ni films,” Appl. Surf. Sci. 127–129, 40–45 (1998).
[CrossRef]

J. Phys. B

M. Sukharev, and T. Seideman, “Coherent control of light propagation via nanoparticle arrays,” J. Phys. B 40, 283–298 (2007).
[CrossRef]

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Nano Lett.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit,” Nano Lett. 9, 1897–1902 (2009).
[CrossRef] [PubMed]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-Field Visualization of Strongly Confined Surface Plasmon Polaritons in Metal−Insulator−Metal Waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. Weeber, C. Finot, and A. Dereux, “Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength,” Nano Lett. 9, 2935–2939 (2009).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators,” Nano Lett. 9, 4403–4411 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A Metal−Oxide−Si Field Effect Plasmonic Modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Nat. Photonics

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3, 283–286 (2009).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Opt. Commun.

Z. Han, and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278, 199–203 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, “Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits,” Phys. Rev. B 79, 195441 (2009).
[CrossRef]

Phys. Rev. Lett.

E. Moreno, S. G. Rodrigo, S. L. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef] [PubMed]

D. J. Bergman, and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent Control of Femtosecond Energy Localization in Nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Other

R. Trebino, Frequency-resolved optical gating: The measurement of ultrashort laser pulses (Kluwer Academic Publishers, 2000).

W. H. A. Schilders, P. G. Ciarlet, J. Lions, and E. J. W. T. Maten, Numerical Methods in Electromagnetics (Elsevier, 2005).

U. Inan, and A. Inan, Engineering electromagnetics (Addison-Wesley, 1999).

Lumerical FDTD solutions, version 6; www.lumerical.com

E. D. Palik, and G. Ghosh, Handbook of optical constants of solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Basic geometry of a 2D splitter structure. Waveguide modes are injected into the top arm (input). The electromagnetic fields are recorded in spectral and temporal domain by appropriate monitors in the left and right output arm. The frequency-dependent transmission and reflection are investigated for varying stub length l and distance d using a waveguide of gap width b.

Fig. 2.
Fig. 2.

Geometry for a series of simulations, where a stub of varying width b and length l is attached to a 30nm wide waveguide.

Fig. 3.
Fig. 3.

FDTD (a) and TLT (b) reflection of a waveguide of 30nm width with an attached stub of varying width and length. The width of the reflection minima and maxima depends on the relative stub width.

Fig. 4.
Fig. 4.

Transmission to the right arm (a: TLT, b: FDTD), left arm (c), and reflection (d) of the splitter structure shown in Fig. 1. All data are shown as a function of the stub length and its distance from the intersection.

Fig. 5.
Fig. 5.

TLT (dashed) and FDTD (solid) reflection (thick, light blue) and transmission to the left (red) and right (black) arm of a splitter structure consisting of 30nm wide waveguides. Two examples are depicted: (a) l = 170nm, d = 320nm, T right T left ≃ 2.5. (b) l = 240nm, d = 350nm, T right T left ≃ 1.2.

Fig. 6.
Fig. 6.

(a) Geometry of the proposed switch. Plasmons are injected by a mode source in the upper arm (input). The electromagnetic fields are recorded in the input, left and right output arm. (b) Electic field amplitude of a 200 fs Gaussian-envelope plasmonic signal before (black) and after (red) the switch. No significant phase-related pulse broadening can be observed.

Fig. 7.
Fig. 7.

(a) Transmission to the left (red) and right (black) arm of a splitter structure upon variation of the refractive index from n = 1 (solid) to n = 1.05 (dashed). (b) Spectral intensity at the left (red) and right (black) output when a Gaussian plasmon pulse of 5nm FWHM impinges on the splitter. Most of the intensity is transmitted to the right arm in the case n = 1 (black solid), while it is transmitted to the left arm for n = 1.05 (red dashed).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Z 0 ( b , ω ) Re [ γ ( b , ω ) ] ω ε 0 b .
R = Z load Z 0 Z load + Z 0 2 .
Z i n = Z 0 Z load + Z 0 tanh ( γ l W G ) Z 0 + Z load tanh ( γ l W G ) .
Z in , stub = Z 0 , stub tanh ( γ l ) .
Z 0 , stub tanh ( γ l ) = i Z 0 , stub tan ( I m [ γ ] l ) ,
Z i n , splitter = 1 + tanh ( γ d ) + tanh ( γ l ) 1 + tanh ( γ d ) [ 1 + tanh ( γ l ) ] Z 0 .
R splitter = 1 + tanh ( γ d ) + tanh ( γ l ) 3 + tanh ( γ l ) + tanh ( γ d ) [ 3 + 2 tanh ( γ l ) ] 2 .
T rightarm = ( 1 R splitter ) R e { 1 + tanh ( γ d ) [ 1 + tanh ( γ l ) ] [ 2 + tanh ( γ l ) [ 1 + tanh ( γ d ) ] } .
T leftarm = ( 1 R splitter ) R e { 1 + tanh ( γ d ) + tanh ( γ l ) [ 2 + tanh ( γ l ) ] [ 1 + tanh ( γ d ) ] } e R e [ γ ] d R e { 1 1 + tanh ( γ l ) } .

Metrics