Abstract

We present an optical system capable of generating stereoscopic images to track trapped particles in three dimensions. Two-dimensional particle tracking on each image yields three dimensional position information. Our approach allows the use of a high numerical aperture (NA= 1.3) objective and large separation angle, such that particles can be tracked axially with resolution of 3nm at 340Hz. Spatial Light Modulators (SLMs), the diffractive elements used to steer and split laser beams in Holographic Optical Tweezers, are also capable of more general operations. We use one here to vary the ratio of lateral to axial trap stiffness by changing the shape of the beam at the back aperture of the microscope objective. Beams which concentrate their optical power at the extremes of the back aperture give rise to much more efficient axial trapping. The flexibility of using an SLM allows us to create multiple traps with different shapes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999).
    [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  4. P. Rodrigo, V. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
    [CrossRef]
  5. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004).
    [CrossRef] [PubMed]
  6. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006).
    [CrossRef] [PubMed]
  7. I. Perch-Nielsen, P. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005).
    [CrossRef] [PubMed]
  8. K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
    [CrossRef] [PubMed]
  9. O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008).
    [CrossRef] [PubMed]
  10. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
    [CrossRef] [PubMed]
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef] [PubMed]
  12. A. T. O’Neil, and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001).
    [CrossRef]
  13. M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009).
    [CrossRef] [PubMed]
  14. A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
    [CrossRef]
  15. S. J. Lee, and S. Kim, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluid. Nanofluid. 6, 577–588 (2009).
    [CrossRef]
  16. J. C. Crocker, and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
    [CrossRef]
  17. Z. Zhang, and C.-H. Menq, “Three-dimensional particle tracking with subnanometer resolution using off-focus images,” Appl. Opt. 47, 2361–2370 (2008).
    [CrossRef] [PubMed]
  18. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
    [CrossRef] [PubMed]
  19. J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation,” Opt. Express 16, 7244–7250 (2008).
    [CrossRef] [PubMed]
  20. J. S. Dam, I. Perch-Nielsen, D. Palima, and J. Glückstad, “Multi-particle three-dimensional coordinate estimation in real-time optical manipulation,” J. Europ. Opt. Soc. Rap. Public. 4, 09045 (2009).
    [CrossRef]
  21. S. R. P. Pavani, and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16, 22048–22057 (2008).
    [CrossRef] [PubMed]
  22. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
    [CrossRef]
  23. C. Pacoret, R. Bowman, G. Gibson, S. Haliyo, D. Carberry, A. Bergander, S. Regnier, and M. Padgett, “Touching the microworld with force-feedback optical tweezers,” Opt. Express 17, 10259–10264 (2009).
    [CrossRef] [PubMed]
  24. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
    [CrossRef]
  25. W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).
  26. J. Leach, M. R. Dennis, J. Courtial, and M. Padgett, “Vortex knots in light,” N. J. Phys. 7, 55 (2005).
    [CrossRef]
  27. L. Ikin, D. M. Carberry, G. Gibson, M. Padgett, and M. J. Miles, “Assembly and force measurement with SPMlike probes in holographic optical tweezers,” N. J. Phys. 11, 023012 (2009).
    [CrossRef]
  28. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express 13, 6899–6904 (2005).
    [CrossRef] [PubMed]
  29. T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
    [CrossRef] [PubMed]
  30. E. McLeod, and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
    [CrossRef] [PubMed]
  31. P. Galajda, and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
    [CrossRef]
  32. T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

2009 (9)

S. J. Lee, and S. Kim, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluid. Nanofluid. 6, 577–588 (2009).
[CrossRef]

J. S. Dam, I. Perch-Nielsen, D. Palima, and J. Glückstad, “Multi-particle three-dimensional coordinate estimation in real-time optical manipulation,” J. Europ. Opt. Soc. Rap. Public. 4, 09045 (2009).
[CrossRef]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[CrossRef]

L. Ikin, D. M. Carberry, G. Gibson, M. Padgett, and M. J. Miles, “Assembly and force measurement with SPMlike probes in holographic optical tweezers,” N. J. Phys. 11, 023012 (2009).
[CrossRef]

T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009).
[CrossRef] [PubMed]

C. Pacoret, R. Bowman, G. Gibson, S. Haliyo, D. Carberry, A. Bergander, S. Regnier, and M. Padgett, “Touching the microworld with force-feedback optical tweezers,” Opt. Express 17, 10259–10264 (2009).
[CrossRef] [PubMed]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
[CrossRef]

2008 (7)

2006 (1)

2005 (4)

2004 (2)

A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[CrossRef]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004).
[CrossRef] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

2001 (2)

A. T. O’Neil, and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001).
[CrossRef]

P. Galajda, and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[CrossRef]

2000 (1)

W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).

1999 (1)

1996 (1)

J. C. Crocker, and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

1993 (1)

K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

1986 (1)

Amato-Grill, J.

Arnold, C. B.

E. McLeod, and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef] [PubMed]

Asavei, T.

T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Bergander, A.

Bernet, S.

W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).

Bjorkholm, J. E.

Block, S.

K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Bøggild, P.

Bouchal, Z.

Bowman, R.

Carberry, D.

Carberry, D. M.

L. Ikin, D. M. Carberry, G. Gibson, M. Padgett, and M. J. Miles, “Assembly and force measurement with SPMlike probes in holographic optical tweezers,” N. J. Phys. 11, 023012 (2009).
[CrossRef]

Cheong, F. C.

Chu, S.

Cizmar, T.

Cooper, J.

Courtial, J.

Crocker, J. C.

J. C. Crocker, and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

Dam, J. S.

J. S. Dam, I. Perch-Nielsen, D. Palima, and J. Glückstad, “Multi-particle three-dimensional coordinate estimation in real-time optical manipulation,” J. Europ. Opt. Soc. Rap. Public. 4, 09045 (2009).
[CrossRef]

J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation,” Opt. Express 16, 7244–7250 (2008).
[CrossRef] [PubMed]

Daria, V.

P. Rodrigo, V. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

Dennis, M. R.

J. Leach, M. R. Dennis, J. Courtial, and M. Padgett, “Vortex knots in light,” N. J. Phys. 7, 55 (2005).
[CrossRef]

Dholakia, K.

Dixon, L.

Dreyfus, R.

Dziedzic, J. M.

Florin, E.

A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[CrossRef]

Friedrich, L.

Galajda, P.

P. Galajda, and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[CrossRef]

Gammelgaard, L.

Gibson, G.

Gibson, G. M.

Glückstad, J.

Greengard, A.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[CrossRef]

Grier, D. G.

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

J. C. Crocker, and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

Gunn-Moore, F.

Gutsche, C.

O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008).
[CrossRef] [PubMed]

Haist, T.

Haliyo, S.

Heckenberg, N. R.

T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

Hecker, N.

W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).

Ikin, L.

L. Ikin, D. M. Carberry, G. Gibson, M. Padgett, and M. J. Miles, “Assembly and force measurement with SPMlike probes in holographic optical tweezers,” N. J. Phys. 11, 023012 (2009).
[CrossRef]

Jordan, P.

Karunwi, K.

Keen, S.

Keyser, U. F.

O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008).
[CrossRef] [PubMed]

Kim, S.

S. J. Lee, and S. Kim, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluid. Nanofluid. 6, 577–588 (2009).
[CrossRef]

Kollarova, V.

Kremer, F.

O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008).
[CrossRef] [PubMed]

Laczik, Z.

Laczik, Z. J.

Leach, J.

Lee, S. J.

S. J. Lee, and S. Kim, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluid. Nanofluid. 6, 577–588 (2009).
[CrossRef]

Linnenberger, A.

McLeod, E.

E. McLeod, and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef] [PubMed]

Menq, C.-H.

Miles, M. J.

L. Ikin, D. M. Carberry, G. Gibson, M. Padgett, and M. J. Miles, “Assembly and force measurement with SPMlike probes in holographic optical tweezers,” N. J. Phys. 11, 023012 (2009).
[CrossRef]

Neumayer, D.

A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[CrossRef]

Nieminen, T. A.

T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

O’Neil, A. T.

A. T. O’Neil, and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001).
[CrossRef]

Ormos, P.

P. Galajda, and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[CrossRef]

Otto, O.

O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008).
[CrossRef] [PubMed]

Pacoret, C.

Padgett, M.

Padgett, M. J.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[CrossRef] [PubMed]

A. T. O’Neil, and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001).
[CrossRef]

Palima, D.

J. S. Dam, I. Perch-Nielsen, D. Palima, and J. Glückstad, “Multi-particle three-dimensional coordinate estimation in real-time optical manipulation,” J. Europ. Opt. Soc. Rap. Public. 4, 09045 (2009).
[CrossRef]

J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation,” Opt. Express 16, 7244–7250 (2008).
[CrossRef] [PubMed]

Pavani, S. R. P.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[CrossRef]

S. R. P. Pavani, and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16, 22048–22057 (2008).
[CrossRef] [PubMed]

Perch-Nielsen, I.

Perch-Nielsen, I. R.

Piestun, R.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[CrossRef]

S. R. P. Pavani, and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16, 22048–22057 (2008).
[CrossRef] [PubMed]

Preece, D.

Regnier, S.

Reicherter, M.

Ritsch-Marte, M.

W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).

Rodrigo, P.

I. Perch-Nielsen, P. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005).
[CrossRef] [PubMed]

P. Rodrigo, V. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

Rodrigo, P. J.

Rohrbach, A.

M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009).
[CrossRef] [PubMed]

A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[CrossRef]

Rubinsztein-Dunlop, H.

T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

Schmidt, C.

K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Schnapp, B.

K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Serati, S.

Sibbett, W.

Sinclair, G.

Singer, W.

W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).

Speidel, M.

Stelzer, E.

A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[CrossRef]

Sun, B.

Svoboda, K.

K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Thomson, L.

Tischer, C.

A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[CrossRef]

Tiziani, H.

Tsampoula, X.

Wagemann, E.

Wright, A. J.

Wulff, K.

Xiao, K.

Zhang, Z.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. Rodrigo, V. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[CrossRef]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009).
[CrossRef]

P. Galajda, and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

J. C. Crocker, and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public. (1)

J. S. Dam, I. Perch-Nielsen, D. Palima, and J. Glückstad, “Multi-particle three-dimensional coordinate estimation in real-time optical manipulation,” J. Europ. Opt. Soc. Rap. Public. 4, 09045 (2009).
[CrossRef]

J. Mod. Opt. (1)

W. Singer, S. Bernet, N. Hecker, and M. Ritsch-Marte, “Three-dimensional force calibration of optical tweezers,” J. Mod. Opt. 47, 2921–2931 (2000).

J. Opt. A (1)

T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A 11, 034001 (2009).

Microfluid. Nanofluid. (1)

S. J. Lee, and S. Kim, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluid. Nanofluid. 6, 577–588 (2009).
[CrossRef]

N. J. Phys. (2)

J. Leach, M. R. Dennis, J. Courtial, and M. Padgett, “Vortex knots in light,” N. J. Phys. 7, 55 (2005).
[CrossRef]

L. Ikin, D. M. Carberry, G. Gibson, M. Padgett, and M. J. Miles, “Assembly and force measurement with SPMlike probes in holographic optical tweezers,” N. J. Phys. 11, 023012 (2009).
[CrossRef]

Nat. Nanotechnol. (1)

E. McLeod, and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef] [PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

K. Svoboda, C. Schmidt, B. Schnapp, and S. Block, “Direct observation of Kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. T. O’Neil, and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun. 193, 45–50 (2001).
[CrossRef]

Opt. Express (11)

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475–5480 (2004).
[CrossRef] [PubMed]

I. Perch-Nielsen, P. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005).
[CrossRef] [PubMed]

P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps,” Opt. Express 13, 6899–6904 (2005).
[CrossRef] [PubMed]

J. S. Dam, I. R. Perch-Nielsen, D. Palima, and J. Glückstad, “Three-dimensional imaging in three-dimensional optical multi-beam micromanipulation,” Opt. Express 16, 7244–7250 (2008).
[CrossRef] [PubMed]

T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[CrossRef] [PubMed]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[CrossRef] [PubMed]

S. R. P. Pavani, and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system,” Opt. Express 16, 22048–22057 (2008).
[CrossRef] [PubMed]

M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009).
[CrossRef] [PubMed]

C. Pacoret, R. Bowman, G. Gibson, S. Haliyo, D. Carberry, A. Bergander, S. Regnier, and M. Padgett, “Touching the microworld with force-feedback optical tweezers,” Opt. Express 17, 10259–10264 (2009).
[CrossRef] [PubMed]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (2)

O. Otto, C. Gutsche, F. Kremer, and U. F. Keyser, “Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis,” Rev. Sci. Instrum. 79, 023710 (2008).
[CrossRef] [PubMed]

A. Rohrbach, C. Tischer, D. Neumayer, E. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75, 2197–2210 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Outline of the imaging system used to produce stereo images. Structured illumination produces an intermediate image with a two-lobed point spread function. Re-imaging via a Fourier filter splits this into two views from different angles.

Fig. 2.
Fig. 2.

(a) The optical system used for stereoscopic imaging in optical tweezers. (b) Images of a 2μm bead at different depths, without the prisms to separate the images. (c) 3D power spectrum of a 2μm bead’s position fluctuations.

Fig. 3.
Fig. 3.

(a) Stiffness of an optical trap for a 5μm Silica bead created with various apertures at the back focal plane of the microscope objective. The values of stiffness are per unit power in the trap. (b) The same stiffnesses for fixed illumination power. (c) Position histograms for three beads trapped with different apertures, showing different axial stiffnesses.

Fig. 4.
Fig. 4.

Stiffness of an optical trap with various apertures, for (a) a 2μm silica particle, (b) a 3μm silica particle, (b) 5μm polystyrene particle.

Metrics