Abstract

We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of ~700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
    [CrossRef] [PubMed]
  2. S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
    [CrossRef] [PubMed]
  3. T. Nisisako and T. Torii, “Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles,” Adv. Mater. 19(11), 1489–1493 (2007).
    [CrossRef]
  4. A. Jayagopal, G. P. Stone, and F. R. Haselton, “Light-guided surface engineering for biomedical applications,” Bioconjug. Chem. 19(3), 792–796 (2008).
    [CrossRef] [PubMed]
  5. F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
    [CrossRef] [PubMed]
  6. M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
    [CrossRef]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  8. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
    [CrossRef] [PubMed]
  9. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
    [CrossRef]
  10. K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
    [CrossRef] [PubMed]
  11. T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
    [CrossRef]
  12. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
    [CrossRef] [PubMed]
  13. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [CrossRef] [PubMed]
  14. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12(9), 1908–1915 (2004).
    [CrossRef] [PubMed]
  15. D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
    [CrossRef]
  16. J. Amako, H. Miura, and T. Sonehara, “Speckle-Noise Reduction on Kinoform Reconstruction Using a Phase-Only Spatial Light-Modulator,” Appl. Opt. 34(17), 3165–3171 (1995).
    [CrossRef] [PubMed]
  17. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
    [CrossRef] [PubMed]
  18. J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001).
    [CrossRef]
  19. D. W. Palmer and S. K. Decker, “Microscopic Circuit Fabrication on Refractory Superconducting Films,” Rev. Sci. Instrum. 44(11), 1621–1624 (1973).
    [CrossRef]
  20. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–248 (1972).
  21. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
    [CrossRef] [PubMed]
  22. R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
    [CrossRef]
  23. F. L. Yap and Y. Zhang, “Protein and cell micropatterning and its integration with micro/nanoparticles assembly,” Biosens. Bioelectron. 22(6), 775–788 (2007).
    [CrossRef]
  24. S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. 71A(2), 359–368 (2004).
    [CrossRef]
  25. R. P. Ekins, “Ligand assays: from electrophoresis to miniaturized microarrays,” Clin. Chem. 44(9), 2015–2030 (1998).
    [PubMed]
  26. M. A. Holden and P. S. Cremer, “Light activated patterning of dye-labeled molecules on surfaces,” J. Am. Chem. Soc. 125(27), 8074–8075 (2003).
    [CrossRef] [PubMed]
  27. B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
    [CrossRef] [PubMed]

2009

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[CrossRef] [PubMed]

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[CrossRef]

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

2008

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
[CrossRef] [PubMed]

A. Jayagopal, G. P. Stone, and F. R. Haselton, “Light-guided surface engineering for biomedical applications,” Bioconjug. Chem. 19(3), 792–796 (2008).
[CrossRef] [PubMed]

2007

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

T. Nisisako and T. Torii, “Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles,” Adv. Mater. 19(11), 1489–1493 (2007).
[CrossRef]

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

F. L. Yap and Y. Zhang, “Protein and cell micropatterning and its integration with micro/nanoparticles assembly,” Biosens. Bioelectron. 22(6), 775–788 (2007).
[CrossRef]

2006

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[CrossRef] [PubMed]

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
[CrossRef] [PubMed]

T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
[CrossRef] [PubMed]

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
[CrossRef] [PubMed]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

2004

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12(9), 1908–1915 (2004).
[CrossRef] [PubMed]

S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. 71A(2), 359–368 (2004).
[CrossRef]

2003

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

M. A. Holden and P. S. Cremer, “Light activated patterning of dye-labeled molecules on surfaces,” J. Am. Chem. Soc. 125(27), 8074–8075 (2003).
[CrossRef] [PubMed]

2001

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001).
[CrossRef]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

1998

R. P. Ekins, “Ligand assays: from electrophoresis to miniaturized microarrays,” Clin. Chem. 44(9), 2015–2030 (1998).
[PubMed]

1995

1973

D. W. Palmer and S. K. Decker, “Microscopic Circuit Fabrication on Refractory Superconducting Films,” Rev. Sci. Instrum. 44(11), 1621–1624 (1973).
[CrossRef]

1972

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–248 (1972).

Allen, R.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Amako, J.

Asplund, M. C.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

Basu, S.

S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. 71A(2), 359–368 (2004).
[CrossRef]

Bell, N. S.

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

Braun, P. V.

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

Breadmore, M. C.

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

Campagnola, P. J.

S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. 71A(2), 359–368 (2004).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Chung, S. E.

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[CrossRef] [PubMed]

Clark, R. L.

Cole, D. G.

Collins, J.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[CrossRef] [PubMed]

Cooper, J.

Courtial, J.

Cremer, P. S.

M. A. Holden and P. S. Cremer, “Light activated patterning of dye-labeled molecules on surfaces,” J. Am. Chem. Soc. 125(27), 8074–8075 (2003).
[CrossRef] [PubMed]

Decker, S. K.

D. W. Palmer and S. K. Decker, “Microscopic Circuit Fabrication on Refractory Superconducting Films,” Rev. Sci. Instrum. 44(11), 1621–1624 (1973).
[CrossRef]

Dendukuri, D.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[CrossRef] [PubMed]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Doyle, P. S.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[CrossRef] [PubMed]

Ekins, R. P.

R. P. Ekins, “Ligand assays: from electrophoresis to miniaturized microarrays,” Clin. Chem. 44(9), 2015–2030 (1998).
[PubMed]

Ertas, N.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Gale, B. K.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

Gates, R. J.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

George, M. C.

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–248 (1972).

Gibson, G.

Gil, D.

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

Gorishnyy, T.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Guijt, R. M.

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Hasegawa, S.

Haselton, F. R.

A. Jayagopal, G. P. Stone, and F. R. Haselton, “Light-guided surface engineering for biomedical applications,” Bioconjug. Chem. 19(3), 792–796 (2008).
[CrossRef] [PubMed]

Hatton, T. A.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[CrossRef] [PubMed]

Hayasaki, Y.

Hill, R. T.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Hirao, K.

Holden, M. A.

M. A. Holden and P. S. Cremer, “Light activated patterning of dye-labeled molecules on surfaces,” J. Am. Chem. Soc. 125(27), 8074–8075 (2003).
[CrossRef] [PubMed]

Itoga, K.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
[CrossRef] [PubMed]

Jacobs, H. O.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001).
[CrossRef]

Jang, J. H.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Jayagopal, A.

A. Jayagopal, G. P. Stone, and F. R. Haselton, “Light-guided surface engineering for biomedical applications,” Bioconjug. Chem. 19(3), 792–796 (2008).
[CrossRef] [PubMed]

Jenness, N. J.

Jeon, S.

Johannes, M. S.

Jordan, P.

Kaehr, B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Karunwi, K.

Kikuchi, A.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
[CrossRef] [PubMed]

Kobayashi, J.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
[CrossRef] [PubMed]

Koh, C. Y.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Kooi, S.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Kuroiwa, Y.

Kwon, S.

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[CrossRef] [PubMed]

Laczik, Z. J.

Leach, J.

Lee, S. A.

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[CrossRef] [PubMed]

Lee, S. H.

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[CrossRef] [PubMed]

Lewis, J. A.

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

Linford, M. R.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

Love, J. C.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001).
[CrossRef]

Mai, T.

T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Maldovan, M.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Malyarchuk, V.

Menon, R.

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

Michael, W.

T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Miura, H.

Mohroz, A.

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

Naiser, T.

T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Narita, Y.

Natarajan, S.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

Nielson, R.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Nishida, N.

Nisisako, T.

T. Nisisako and T. Torii, “Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles,” Adv. Mater. 19(11), 1489–1493 (2007).
[CrossRef]

Okano, T.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
[CrossRef] [PubMed]

Ott, A.

T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Padgett, M.

Padgett, M. J.

Palmer, D. W.

D. W. Palmer and S. K. Decker, “Microscopic Circuit Fabrication on Refractory Superconducting Films,” Rev. Sci. Instrum. 44(11), 1621–1624 (1973).
[CrossRef]

Park, W.

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[CrossRef] [PubMed]

Piech, M.

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

Plenert, M.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Pregibon, D. C.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[CrossRef] [PubMed]

Rogers, J. A.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–248 (1972).

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Shear, J. B.

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[CrossRef]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Sinclair, G.

Smentkowski, V. S.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

Smith, H. I.

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

Sonehara, T.

Stone, G. P.

A. Jayagopal, G. P. Stone, and F. R. Haselton, “Light-guided surface engineering for biomedical applications,” Bioconjug. Chem. 19(3), 792–796 (2008).
[CrossRef] [PubMed]

Takeshima, N.

Tanaka, S.

Thomas, E. L.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Thomson, L.

Torii, T.

T. Nisisako and T. Torii, “Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles,” Adv. Mater. 19(11), 1489–1493 (2007).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Ullal, C. K.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Watt, R. K.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

Whitesides, G. M.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001).
[CrossRef]

Wiederrecht, G. P.

Wolfe, D. B.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001).
[CrossRef]

Wulff, K.

Wulff, K. D.

Yamato, M.

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
[CrossRef] [PubMed]

Yap, F. L.

F. L. Yap and Y. Zhang, “Protein and cell micropatterning and its integration with micro/nanoparticles assembly,” Biosens. Bioelectron. 22(6), 775–788 (2007).
[CrossRef]

Zhang, F.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

Zhang, Y.

F. L. Yap and Y. Zhang, “Protein and cell micropatterning and its integration with micro/nanoparticles assembly,” Biosens. Bioelectron. 22(6), 775–788 (2007).
[CrossRef]

Adv. Funct. Mater.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Adv. Mater.

M. C. George, A. Mohroz, M. Piech, N. S. Bell, J. A. Lewis, and P. V. Braun, “Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures,” Adv. Mater. 21(1), 66–70 (2009).
[CrossRef]

T. Nisisako and T. Torii, “Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles,” Adv. Mater. 19(11), 1489–1493 (2007).
[CrossRef]

Anal. Chem.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Bioconjug. Chem.

A. Jayagopal, G. P. Stone, and F. R. Haselton, “Light-guided surface engineering for biomedical applications,” Bioconjug. Chem. 19(3), 792–796 (2008).
[CrossRef] [PubMed]

Biomaterials

K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns,” Biomaterials 27(15), 3005–3009 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron.

F. L. Yap and Y. Zhang, “Protein and cell micropatterning and its integration with micro/nanoparticles assembly,” Biosens. Bioelectron. 22(6), 775–788 (2007).
[CrossRef]

Clin. Chem.

R. P. Ekins, “Ligand assays: from electrophoresis to miniaturized microarrays,” Clin. Chem. 44(9), 2015–2030 (1998).
[PubMed]

J. Am. Chem. Soc.

M. A. Holden and P. S. Cremer, “Light activated patterning of dye-labeled molecules on surfaces,” J. Am. Chem. Soc. 125(27), 8074–8075 (2003).
[CrossRef] [PubMed]

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[CrossRef] [PubMed]

J. Biomed. Mater. Res.

S. Basu and P. J. Campagnola, “Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation,” J. Biomed. Mater. Res. 71A(2), 359–368 (2004).
[CrossRef]

J. Vac. Sci. Technol. B

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

Lab Chip

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab Chip 9(12), 1670–1675 (2009).
[CrossRef] [PubMed]

Langmuir

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17(19), 6005–6012 (2001).
[CrossRef]

Nat. Mater.

D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nat. Mater. 5(5), 365–369 (2006).
[CrossRef] [PubMed]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optik (Stuttg.)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–248 (1972).

Rev. Sci. Instrum.

D. W. Palmer and S. K. Decker, “Microscopic Circuit Fabrication on Refractory Superconducting Films,” Rev. Sci. Instrum. 44(11), 1621–1624 (1973).
[CrossRef]

T. Naiser, T. Mai, W. Michael, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Small

R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small 5(1), 120–125 (2009).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (7451 KB)     
» Media 2: MOV (2190 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The SLM-based diffractive patterning system. The output from a Q-switched 532 nm laser is polarized, collimated, and expanded to address the display of a SLM operating in phase-only mode. Three relay lenses and several mirrors direct the SLM modulated beam to the pupil plane of a high NA microscope objective. (a) Close up of an intensity distribution generated for single-shot processing, three shapes are projected into a sample material at once. (b) An intensity distribution of nine foci generated for the simultaneous serial processing of nine unique structures. (c) Close up of the SLM display showing the expanded, collimated beam incident upon a phase hologram. The phase hologram can be modified to produce any desired intensity distribution including those seen in (a) and (b).

Fig. 2
Fig. 2

SEM images of various 2D patterns fabricated using the described method with a 100x objective. The inset SEM images captured at a 26° angle to the sample surface show the photoresist depth. The patterns in (a-e) were fabricated using the single-shot mode, while the pattern in (f) was fabricated in serial mode. As shown in movie [(a) Media 1], single-shot patterns required the display of 30 phase holograms, during a 10 second fabrication time at an average laser power of ~1 mW, to eliminate speckle and produce smooth continuous features. The arrays and arbitrary shapes demonstrate the versatility of the single-shot method. The array in (f) shows the ability to provide high-throughput processing in serial mode, while the inset displays replication accuracy. The phase holograms were displayed on the SLM at 8 fps and created 25 independent foci to simultaneously transfer each feature of the 5 x 5 array. An average power of 1 mW was used. Scale bars are 5µm except the inset of (f) which is 20 µm.

Fig. 3
Fig. 3

SEM micrographs of 3D microstructures fabricated using the serial processing mode. (a) The 9-feature pattern was designed in CAD software and then all features were simultaneously fabricated in NOA 63 using a single phase-modulated source beam (Media 2). The various views (b-d) show the morphology of the pattern. Features 2, 5, 7, & 9 are 5 µm in height, features 1, 4, & 8 are 7.5 µm in height, and features 3 & 6 are 10 µm in height. The stars in each image indicate the pattern orientation. The holograms were displayed on the SLM at 8 fps with an average power of 62 mW through a 100x objective. (e-h) A bridge type structure fabricated in SU-8 2010 demonstrates complete 3D control of fabrication, including the ability to create voids within the microstructure. Holograms were displayed on the SLM at 2 fps with an average power of 62 mW through the 100x objective. The scale bars in all images are 5 µm.

Fig. 4
Fig. 4

BSA-FITC solution exposed to three time-averaged patterns simultaneously at 110 mW for 10 s. (a) Real-time microscope image captured during fabrication. (b) Fluorescent image of patterned protein after sample wash with 1x PBS. (c) SEM image of sample after a chemical desiccation process. Predicted feature dimensions were assessed using area measurements from both the fluorescent and SEM images. The fluorescent measurements indicated the features were ~6% larger than desired, while the SEM measurements indicated they were ~6% smaller than desired; demonstrating an accurate tolerance for pattern transfer. Next, a BSA-FITC solution spiked with avidin conjugated FITC was patterned. Biotin conjugated with ATTO 655 was applied to the resulting BSA/avidin structures for 20 min to assess the retention of avidin binding ability. Fluorescent microscope images were taken using (d) FITC and (e) Cy5 filter sets. A combined fluorescent image (f) reveals the functionality of the substrate after patterning. All scale bars are 50 µm.

Metrics