Abstract

Subwavelength conductor-gap-silicon plasmonic waveguides along with compact S-bends and Y-splitters were theoretically investigated and experimentally demonstrated on a silicon-on-insulator platform. A thin SiO2 gap between the conductor layer and silicon core provides subwavelength confinement of light while a long propagation length of 40µm was achieved. Coupling of light between the plasmonic and conventional silicon photonic waveguides was also demonstrated with a high efficiency of 80%. The compact sizes, low loss operation, efficient input/output coupling, combined with a CMOS-compatible fabrication process, make these conductor-gap-silicon plasmonic devices a promising platform for realizing densely-integrated plasmonic circuits.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
    [CrossRef] [PubMed]
  2. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
    [CrossRef] [PubMed]
  3. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  4. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
    [CrossRef] [PubMed]
  5. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  6. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14(10), 4494–4503 (2006).
    [CrossRef] [PubMed]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  8. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
    [CrossRef]
  9. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [CrossRef] [PubMed]
  10. J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
    [CrossRef] [PubMed]
  11. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
    [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  13. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
    [CrossRef] [PubMed]
  14. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
    [CrossRef]
  15. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
    [CrossRef]
  16. Material parameters are extrapolated using data from http://refractiveindex.info .
  17. A. M. Prabhu, A. Tsay, Z. Han and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” to appear in IEEE Photon. J. (2010).

2010

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
[CrossRef]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M.-S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[CrossRef] [PubMed]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[CrossRef] [PubMed]

2009

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
[CrossRef] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

2008

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

2006

2005

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Alivisatos, A. P.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
[CrossRef]

Atwater, H.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
[CrossRef]

Avrutsky, I.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Berini, P.

Bozhevolnyi, S. I.

Buchwald, W.

Charbonneau, R.

Chen, L.

Chen, Z.

Dai, D.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dereux, A.

Devaux, E.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
[CrossRef]

Ebbesen, T. W.

Elezzabi, A. Y.

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Freude, W.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

Fujii, M.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Han, Z.

He, S.

Holmgaard, T.

Ju, J. J.

Kim, J. T.

Kim, M.-S.

Krasavin, A. V.

Lahoud, N.

Leuthold, J.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

Lipson, M.

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Markey, L.

Mattiussi, G.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Park, S.

Park, S. K.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Sederberg, S.

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009).
[CrossRef] [PubMed]

Shakya, J.

Sheldon, M. T.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
[CrossRef]

Shin, S.-Y.

Soref, R.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
[CrossRef]

Van, V.

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Volkov, V. S.

Zayats, A. V.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Appl. Phys. Lett.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett. 96(12), 121101 (2010).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. Atwater, “Silicon-based plasmonic for on-chip photonics,” IEEE J. Quantum Electron. 16(1), 295–306 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009).
[CrossRef]

Nat. Photonics

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

Material parameters are extrapolated using data from http://refractiveindex.info .

A. M. Prabhu, A. Tsay, Z. Han and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” to appear in IEEE Photon. J. (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(color online) (a) Conductor-gap-silicon plasmonic waveguide structure showing the E y field distribution of the quasi-TM mode. (b) Ratio of the powers inside the SiO2 gap and the Si core at varying gap thickness. (c) Propagation length at varying gap thickness. In the above cases, the device parameters are h Au = 50nm, h Si = 340nm and w = 200nm at 1550nm wavelength. (d) Propagation length at varying waveguide widths for different values of gap and gold thickness.

Fig. 2
Fig. 2

(color online) (a) Simulated |E y| field distribution of the fundamental quasi-TM mode in the CGS plasmonic waveguide. (b) Cross section of the |E y| field distribution in the x-direction at the metal-SiO2 interface. (c) Cross section of the |E y| field in the y-direction through the center of the waveguide.

Fig. 3
Fig. 3

(color online) (a) SEM image showing the cross section of a 250nm-wide CGS plasmonic waveguide (left) beside a 600nm-wide Si waveguide for comparison. The Si layer is 340nm high with a 50nm-thick layer of SiO2 on top. The plasmonic waveguide is capped with an extra 50nm-thick gold layer. (b) Top-view SEM image showing the CGS waveguide, the taper couplers and I/O silicon waveguides. (c) Measured values (dots) and fitted curve (blue line) of the transmitted powers of CGS waveguides of different lengths.

Fig. 4
Fig. 4

(color online) (a) Schematic of the plasmonic taper coupler. (b) SEM image of a fabricated plasmonic taper. (c) Side view of the E y-field distribution in a vertical plane through the center of the coupler obtained from 3D FDTD simulation. Power is input from the Si waveguide at the left. (d) Top view of the simulated E y-field distribution in a horizontal plane through the center of the SiO2 gap of the coupler.

Fig. 5
Fig. 5

(color online) (a) Theoretical loss in CGS plasmonic bends (solid blue line) and Si dielectric photonic bends (dashed red line) as functions of bending radius. The dimensions of the waveguides are h Au = h SiO2 = 50nm, h Si = 340nm, w = 200nm at the 1550nm wavelength. (b) 3D FDTD simulation result of the E y-field distribution in a 2µm-radius CGS S-bend at 1550nm. The cross section is through the SiO2 gap. (c) Same simulation with cross section through the center of the Si layer where the field is much weaker in the Si than in the SiO2 gap. (d) SEM image of the fabricated CGS S-bend with 2μm radius. (e) Wavelength scan of the normalized transmitted power of the fabricated CGS S-bend.

Fig. 6
Fig. 6

(color online) (a) SEM image of a fabricated CGS Y-splitter with 2μm bending radius. (b) 3D FDTD simulation result of the E y-field distribution in the Y-splitter at 1550nm wavelength. (c) Wavelength scan of the transmitted powers in the two output branches of the plasmonic Y-splitter.

Metrics