Abstract

We present a high-Q 3D waveguide transmission filter for the THz-domain, based on an inhomogeneous Bragg grating, incorporated into the walls of a metallic slit waveguide. The reasons for the occurring loss mechanisms in the compact component are presented and the losses are minimized by selective mode adaption and by tapering the transitions to the corrugated regions. The performance of the device and the influence of parameter variations are analyzed by detailed numerical simulations. These 3D simulations clearly show the drastic drawback of 2D calculations in designing narrowband 3D metal-dielectric waveguide filters and could even lead to a better performance than known designs in 2D technology.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Haus and C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12(9), 532–539 (1976).
    [CrossRef]
  2. S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12(7), 1267–1272 (1995).
    [CrossRef]
  3. R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
    [CrossRef]
  4. M. Palamaru and Ph. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466–1468 (2001).
    [CrossRef]
  5. D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
    [CrossRef]
  6. Ph. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12(3), 458–467 (2004).
    [CrossRef] [PubMed]
  7. Q. Chen, M. Archbold, and D. Allsopp, “Design of ultrahigh-Q 1-D photonic crystal microcavities,” IEEE J. Quantum Electron. 45(3), 233–239 (2009).
    [CrossRef]
  8. A. Boltasseva, S. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006).
    [CrossRef]
  9. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
    [CrossRef]
  10. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  11. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
    [CrossRef]
  12. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S 601–S618, 618 (2006).
    [CrossRef]
  13. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
    [CrossRef]
  14. A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008).
    [CrossRef] [PubMed]
  15. C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
    [CrossRef]
  16. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
    [CrossRef]
  17. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
    [CrossRef]
  18. R. Mendis, “Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides,” Opt. Lett. 31(17), 2643–2645 (2006).
    [CrossRef] [PubMed]
  19. CST Microwave Studio (Computer Simulation Technology AG)
  20. M. Ordal, L. Long, R. J. Bell, S. Bell, R. R. Bell, R. Alexander, and C. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [CrossRef] [PubMed]
  21. J. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
    [CrossRef]

2009 (3)

Q. Chen, M. Archbold, and D. Allsopp, “Design of ultrahigh-Q 1-D photonic crystal microcavities,” IEEE J. Quantum Electron. 45(3), 233–239 (2009).
[CrossRef]

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[CrossRef]

2008 (1)

2007 (5)

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

2006 (3)

2004 (1)

2002 (1)

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

2001 (1)

M. Palamaru and Ph. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466–1468 (2001).
[CrossRef]

1996 (1)

J. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
[CrossRef]

1995 (2)

S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12(7), 1267–1272 (1995).
[CrossRef]

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
[CrossRef]

1983 (1)

1976 (1)

H. Haus and C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12(9), 532–539 (1976).
[CrossRef]

Alexander, R.

Allsopp, D.

Q. Chen, M. Archbold, and D. Allsopp, “Design of ultrahigh-Q 1-D photonic crystal microcavities,” IEEE J. Quantum Electron. 45(3), 233–239 (2009).
[CrossRef]

Archbold, M.

Q. Chen, M. Archbold, and D. Allsopp, “Design of ultrahigh-Q 1-D photonic crystal microcavities,” IEEE J. Quantum Electron. 45(3), 233–239 (2009).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S.

Bingham, A. L.

Boltasseva, A.

Bozhevolnyi, S.

Brongersma, M. L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Chen, J. C.

Chen, Q.

Q. Chen, M. Archbold, and D. Allsopp, “Design of ultrahigh-Q 1-D photonic crystal microcavities,” IEEE J. Quantum Electron. 45(3), 233–239 (2009).
[CrossRef]

Chen, Y.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Dal Negro, L.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Devenyi, A.

Fan, S.

Feng, N.-N.

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Först, M.

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S 601–S618, 618 (2006).
[CrossRef]

Grischkowsky, D.

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008).
[CrossRef] [PubMed]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Harsha, S.

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Haus, H.

H. Haus and C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12(9), 532–539 (1976).
[CrossRef]

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Hugonin, J.

Joannopoulos, J. D.

Kleine-Ostmann, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Koch, M.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Krumbholz, N.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Kürner, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S 601–S618, 618 (2006).
[CrossRef]

Lalanne, Ph.

Ph. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12(3), 458–467 (2004).
[CrossRef] [PubMed]

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

M. Palamaru and Ph. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466–1468 (2001).
[CrossRef]

Laman, N.

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

Lamb, J.

J. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
[CrossRef]

Leminger, O.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
[CrossRef]

Leosson, K.

Long, L.

Meade, R. D.

Mendis, R.

Mias, S.

Mittleman, D.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S 601–S618, 618 (2006).
[CrossRef]

Nikolajsen, T.

Ordal, M.

Palamaru, M.

M. Palamaru and Ph. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466–1468 (2001).
[CrossRef]

Peyrade, D.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Piesiewicz, R.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Schoebel, J.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

Shank, C.

H. Haus and C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12(9), 532–539 (1976).
[CrossRef]

Sherwin, M.

C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[CrossRef]

Silberstein, E.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Talneau, A.

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Ward, C.

Winn, J. N.

Yee, C.

C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[CrossRef]

Zengerle, R.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Palamaru and Ph. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78(11), 1466–1468 (2001).
[CrossRef]

D. Peyrade, E. Silberstein, Ph. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[CrossRef]

C. Yee and M. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007).
[CrossRef]

H. Haus and C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12(9), 532–539 (1976).
[CrossRef]

Q. Chen, M. Archbold, and D. Allsopp, “Design of ultrahigh-Q 1-D photonic crystal microcavities,” IEEE J. Quantum Electron. 45(3), 233–239 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

J. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17(12), 1997–2034 (1996).
[CrossRef]

J. Lightwave Technol. (2)

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
[CrossRef]

A. Boltasseva, S. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S 601–S618, 618 (2006).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

CST Microwave Studio (Computer Simulation Technology AG)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layout of the filter structure. (a) Metal plates with corrugated walls and silicon in the air gap, (b) top view of the structure showing the tapered transitions and the phase-shift region, (c) groove geometry in detail.

Fig. 2
Fig. 2

(a) Calculated normalized transmission spectrum in a quasi-2D calculation without metallic losses and without dielectric material, (b) transmission spectrum of the full 3D calculation with t = 500 µm without metallic losses and without dielectric material.

Fig. 3
Fig. 3

Comparison of Q and radiated power for different values of the component thickness t.

Fig. 4
Fig. 4

(a) E-field distribution of the x-component in a z-cut through the waveguide without Si layer, (b) field distribution of the completely Si-filled waveguide, (c) field distribution after limiting the Si element in x-direction.

Fig. 5
Fig. 5

(a) Comparison of the transmission at resonance in the case of the completely filled waveguide without any loss (diamonds), with pure metallic loss (circles), with pure dielectric loss (triangles) and with metallic as well as dielectric losses (squares); (b) calculated transmission spectrum of the tapered structure with lateral field confinement, including metallic and dielectric losses, resulting in a resonance Q-factor of Q = 530 at 80% transmission.

Metrics