Abstract

We demonstrated spectral compression of ultrashort soliton pulses in a wide wavelength region based on an adiabatic soliton spectral compression technique using a comb-profile fiber. The comb-profile fiber was carefully designed using numerical analysis and fabricated using a conventional single-mode fiber and a dispersion-shifted fiber. The spectral width of a 200 fs soliton pulse was compressed from 12 to 15 nm to 0.54–0.71 nm in the wavelength region 1620–1850 nm, giving a spectral compression factor of up to 19.8–25.9. Owing to the soliton effect, the side lobe level was suppressed to –19.2 to –9.7 dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [CrossRef] [PubMed]
  2. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [CrossRef] [PubMed]
  3. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  4. N. Nishizawa and T. Goto, “Compact system of wavelength tunable femtosecond soliton pulse generation system,” IEEE Photon. Technol. Lett. 11, 325 (1999).
    [CrossRef]
  5. N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
    [CrossRef]
  6. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
    [CrossRef]
  7. T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
    [CrossRef]
  8. K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33(24), 2892–2894 (2008).
    [CrossRef] [PubMed]
  9. M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
    [CrossRef]
  10. B. R. Washburn, J. A. Buck, and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25(7), 445–447 (2000).
    [CrossRef]
  11. J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
    [CrossRef]
  12. E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30(15), 2025–2027 (2005).
    [CrossRef] [PubMed]
  13. S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comblike dispersion-profiled fiber for soliton pulse train generation,” Opt. Lett. 19(8), 539–541 (1994).
    [CrossRef] [PubMed]
  14. K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  16. B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
    [CrossRef]

2009 (1)

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[CrossRef]

2008 (2)

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33(24), 2892–2894 (2008).
[CrossRef] [PubMed]

2006 (2)

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

2005 (3)

2003 (1)

2002 (1)

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[CrossRef]

2001 (1)

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
[CrossRef]

2000 (1)

1999 (1)

N. Nishizawa and T. Goto, “Compact system of wavelength tunable femtosecond soliton pulse generation system,” IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

1994 (1)

1993 (1)

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[CrossRef]

Andresen, E. R.

Billet, C.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

Boudoux, C.

Bouma, B. E.

Buck, J. A.

Cable, A. E.

Chernikov, S. V.

Dudley, J. M.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

Ferriere, R.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

Fujimoto, J. G.

Gabler, T.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[CrossRef]

Goto, T.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength tunable femtosecond soliton pulse generation system,” IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Hiroishi, J.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[CrossRef]

Hopfel, R. A.

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[CrossRef]

Hori, T.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
[CrossRef]

Huber, R.

Igarashi, K.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[CrossRef]

Jiang, J. Y.

Kashyap, R.

Keiding, S. R.

Kibler, B.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

Lacourt, P.-A.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

Larger, L.

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

Lee, J. H.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

Liem, A.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[CrossRef]

Limpert, J.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[CrossRef]

Liu, X.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

Nagai, H.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
[CrossRef]

Namiki, S.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[CrossRef]

Nishizawa, N.

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[CrossRef]

K. Sumimura, T. Ohta, and N. Nishizawa, “Quasi-super-continuum generation using ultrahigh-speed wavelength-tunable soliton pulses,” Opt. Lett. 33(24), 2892–2894 (2008).
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength tunable femtosecond soliton pulse generation system,” IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Oberthaler, M.

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[CrossRef]

Ohta, T.

Ralph, S. E.

Sumimura, K.

Taylor, J. R.

Tearney, G. J.

Thøgersen, J.

Tunnermann, A.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[CrossRef]

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

Washburn, B. R.

Wojtkowski, M.

Xu, C.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

Yagi, T.

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[CrossRef]

Yoshida, M.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
[CrossRef]

Yun, S. H.

Zellmer, H.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[CrossRef]

Appl. Phys. B (1)

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Hopfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63(8), 1017 (1993).
[CrossRef]

Electron. Lett. (2)

K. Igarashi, J. Hiroishi, T. Yagi, and S. Namiki, “Comb-like profiled fiber for efficient generation of high quality 160 GHz sub-picosecond soliton train,” Electron. Lett. 41(12), 688 (2005).
[CrossRef]

B. Kibler, C. Billet, P.-A. Lacourt, R. Ferriere, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fiber,” Electron. Lett. 42(17), 965 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Nishizawa, “Highly functional all-optical control using ultrafast nonlinear effects in optical fibers,” IEEE J. Quantum Electron. 45(11), 1446–1455 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14(3), 713–723 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13(1), 13–15 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength tunable femtosecond soliton pulse generation system,” IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Supplementary Material (1)

» Media 1: MOV (421 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Profile of actual and averaged second-order dispersion of comb-profile fiber at each segment, and variation of (b) spectral width at FWHM and (c) soliton order, N, as a function of propagation length.

Fig. 2
Fig. 2

(a) Spectra (Media 1) and (b) temporal shapes of input and output pulses for the CPF at wavelength of 1620 nm. The instantaneous wavelength of the output pulse is also shown in (b).

Fig. 3
Fig. 3

Experimental setup for spectral compression of wavelength-tunable soliton pulses using CPF. PBS: polarization beam splitter, PM-SMF: polarization-maintaining single mode fiber, VA: variable attenuator, CPF: comb-like dispersion profile fiber.

Fig. 4
Fig. 4

Optical spectra of spectrum-compressed pulse at 1620 nm, showing (a) experimental and (b) numerical results.

Fig. 5
Fig. 5

Optical spectra of (a) wavelength-tunable soliton pulses and (b) spectrum-compressed pulses in the wavelength region 1620–1850 nm.

Fig. 6
Fig. 6

Wavelength dependence of the spectral compression showing (a) compressed spectral width at FWHM, compression ratio (CR), and side lobe suppression ratio (SLSR) and (b) output power and power of soliton pulse.

Fig. 7
Fig. 7

Optical spectra of spectrum-compressed wavelength-tunable soliton pulses using CPF and chromatic ablation of coupling lens.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N 2 = γ P 0 T F W H M 2 3.11 | β 2 | ,

Metrics