Abstract

A superlattice structure of planar metamaterial is fabricated, where the orientation of double-split ring resonators is altered in a periodic way. A time-domain terahertz transmission spectrum shows an enhanced Q-factor resonance appears when a closed mode is selectively excited by angular tuning of polarization direction. The polarization-angle selective resonance in metamaterial superlattice has a potential application in the selective field enhancement for spectroscopy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [CrossRef] [PubMed]
  2. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef] [PubMed]
  3. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
    [CrossRef] [PubMed]
  4. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
    [CrossRef] [PubMed]
  5. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
    [CrossRef] [PubMed]
  6. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
    [CrossRef]
  7. S. Prosvirnin and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi et al. ed. (Kluwer Academic Publishers, The Netherlands, 2003).
  8. A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48, 1419 (2000).
    [CrossRef]
  9. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
    [CrossRef] [PubMed]
  10. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746 (2008).
    [CrossRef] [PubMed]
  11. M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34, 1579 (2009).
    [CrossRef] [PubMed]
  12. R. Singh, C. Rockstuhl, F. Lederer, andW. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94, 021116 (2009).
    [CrossRef]
  13. C.-Y. Chen, I.-W. Un, N.-H. Tai, T.-J. Yen, and C.-Y. Chen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17, 15372 (2009).
    [CrossRef] [PubMed]
  14. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Applying the Babinet principle to asymmetric resonators,” Electron. Lett. 44, 1228 (2008).
    [CrossRef]
  15. See http://www.teraview.com
  16. R. A. Cheville, “Terahertz Time-Domain Spectroscopy with Photoconductive Antennas,” in Terahertz Spectroscopy: Principles and Applications, Susan L. Dexheimer ed. (CRC Press, Taylor & Francis, Boca Raton, Fl., 2008).
  17. See http://www.cvimellesgriot.com
  18. See http://www.lumerical.com/
  19. “Gold (Au)” and “Titanium (Ti),” in CRC Handbook of Chemistry and Physics 89th edition, David R. Lide ed. (Taylor & Francis, Boca Raton, Fl., 2008).
  20. N. Papasimakis and N. I. Zheludev, “Metamaterial-Induced Transparency: Sharp Fano Resonances and Slow Light,” Optics and Photnics News 20, 23 (2009).
  21. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of meta-molecules,” arXiv.org/physics/arXiv:0908.2533 (2009).
  22. I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94, 153505 (2009).
    [CrossRef]

2009 (7)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, andW. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94, 021116 (2009).
[CrossRef]

N. Papasimakis and N. I. Zheludev, “Metamaterial-Induced Transparency: Sharp Fano Resonances and Slow Light,” Optics and Photnics News 20, 23 (2009).

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94, 153505 (2009).
[CrossRef]

M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34, 1579 (2009).
[CrossRef] [PubMed]

C.-Y. Chen, I.-W. Un, N.-H. Tai, T.-J. Yen, and C.-Y. Chen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17, 15372 (2009).
[CrossRef] [PubMed]

2008 (5)

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746 (2008).
[CrossRef] [PubMed]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Applying the Babinet principle to asymmetric resonators,” Electron. Lett. 44, 1228 (2008).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

2000 (1)

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48, 1419 (2000).
[CrossRef]

Al-Naib, I. A. I.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94, 153505 (2009).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Applying the Babinet principle to asymmetric resonators,” Electron. Lett. 44, 1228 (2008).
[CrossRef]

Bingham, C.

Chen, C.-Y.

Christ, A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Cummer, S. A.

Decker, M.

Ekinci, Y.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Halas, N. J.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Hand, T. H.

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94, 153505 (2009).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Applying the Babinet principle to asymmetric resonators,” Electron. Lett. 44, 1228 (2008).
[CrossRef]

Jokerst, N. M.

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Kirilenko, A. A.

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48, 1419 (2000).
[CrossRef]

Koch, M.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94, 153505 (2009).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Applying the Babinet principle to asymmetric resonators,” Electron. Lett. 44, 1228 (2008).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, andW. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94, 021116 (2009).
[CrossRef]

Linden, S.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Maier, S. A.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Martin, O. J. F.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Mospan, L. P.

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48, 1419 (2000).
[CrossRef]

Nordlander, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Padilla, W. J.

Palit, S.

Papasimakis, N.

N. Papasimakis and N. I. Zheludev, “Metamaterial-Induced Transparency: Sharp Fano Resonances and Slow Light,” Optics and Photnics News 20, 23 (2009).

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, andW. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94, 021116 (2009).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Singh, R.

R. Singh, C. Rockstuhl, F. Lederer, andW. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94, 021116 (2009).
[CrossRef]

Smith, D. R.

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Solak, H. H.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Tai, N.-H.

Tikhodeev, S. G.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Tyler, T.

Un, I.-W.

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Wegener, M.

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Yen, T.-J.

Yuan, Y.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

N. Papasimakis and N. I. Zheludev, “Metamaterial-Induced Transparency: Sharp Fano Resonances and Slow Light,” Optics and Photnics News 20, 23 (2009).

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

I. A. I. Al-Naib, C. Jansen, and M. Koch, “High Q-factor metasurfaces based on miniaturized asymmetric single split resonators,” Appl. Phys. Lett. 94, 153505 (2009).
[CrossRef]

R. Singh, C. Rockstuhl, F. Lederer, andW. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Appl. Phys. Lett. 94, 021116 (2009).
[CrossRef]

Electron. Lett. (1)

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Applying the Babinet principle to asymmetric resonators,” Electron. Lett. 44, 1228 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48, 1419 (2000).
[CrossRef]

Nano Lett. (2)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optics and Photnics News (1)

N. Papasimakis and N. I. Zheludev, “Metamaterial-Induced Transparency: Sharp Fano Resonances and Slow Light,” Optics and Photnics News 20, 23 (2009).

Phys. Rev. B (1)

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Other (7)

S. Prosvirnin and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi et al. ed. (Kluwer Academic Publishers, The Netherlands, 2003).

See http://www.teraview.com

R. A. Cheville, “Terahertz Time-Domain Spectroscopy with Photoconductive Antennas,” in Terahertz Spectroscopy: Principles and Applications, Susan L. Dexheimer ed. (CRC Press, Taylor & Francis, Boca Raton, Fl., 2008).

See http://www.cvimellesgriot.com

See http://www.lumerical.com/

“Gold (Au)” and “Titanium (Ti),” in CRC Handbook of Chemistry and Physics 89th edition, David R. Lide ed. (Taylor & Francis, Boca Raton, Fl., 2008).

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of meta-molecules,” arXiv.org/physics/arXiv:0908.2533 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical micrographs of (a) reference metamaterial and (b) sample metamaterial superlattice are shown.

Fig. 2.
Fig. 2.

Microscope pictures of (a) reference metamaterial and (b) sample metamaterial superlattice are shown along with (c) polarization angle of E-field. THz transmission spectra of (d) reference metamaterial and (e)&(f) sample metamaterial superlattice are shown for different polarization angles.

Fig. 3.
Fig. 3.

(a)–(d) Absorbance plots of THz transmission spectra of sample metamaterial superlattice are shown for four angular domains ① (0°~45°), ② (45°~90°), ② (90°~135°), and ④ (135°~180°), defined in (e). (f) The quality factor Q is plotted as a function of polarization angle for each resonance, black circle for ωC , blue inverted triangle for ωL O , and red upright triangle for ωH O .

Fig. 4.
Fig. 4.

(a)&(c) Schematics of metamaterials and E-field polarization direction. (b)&(d) Absorbance plots of transmission spectra with Lorentzian resonance fits.

Fig. 5.
Fig. 5.

For the polarization angle of 67.5° and resonance frequency ωC = 40cm−1, a detailed distribution of current densities obtained by a finite difference time domain simulation is plotted. (a) and (b) correspond to the Jx and Jy , and (c) is the schematic diagram of current densities, respectively. The blue oblique line refers to E-field direction.

Fig. 6.
Fig. 6.

For the polarization angle of 137.5° and resonance frequency ωL O = 45cm−1, a detailed distribution of current densities obtained by a finite difference time domain simulation is plotted. (a) and (b) correspond to the Jx and Jy , and (c) is the schematic diagram of current densities, respectively. The blue oblique line refers to E-field direction.

Metrics