Abstract

We study the relaxation oscillations in a continuous-wave intracavity Raman laser both theoretically and experimentally. Analytic expressions for the relaxation oscillation frequency are derived from the rate-equations and are validated by experiments. We show that some important experimental parameters such as the effective Raman gain coefficient and intracavity Stokes loss can be determined simply by measuring the relaxation oscillation frequency versus pump power.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30(13), 1701–1703 (2005).
    [CrossRef] [PubMed]
  2. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett. 30(18), 2454–2456 (2005).
    [CrossRef] [PubMed]
  3. L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
    [CrossRef] [PubMed]
  4. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
    [CrossRef] [PubMed]
  5. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
    [CrossRef]
  6. D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
    [CrossRef]
  7. P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [CrossRef]
  8. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [CrossRef]
  9. A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
    [CrossRef]
  10. S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
    [CrossRef]
  11. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [CrossRef]
  12. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [CrossRef]
  13. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif. 1986) Chap. 25, pp. 962–964; Chap. 11, pp. 428–429.
  14. K. J. Weingarten, B. Braun, and U. Keller, “In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19(15), 1140–1142 (1994).
    [PubMed]
  15. D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
    [CrossRef]
  16. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
    [CrossRef]

2009 (1)

2008 (1)

2007 (1)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

2006 (1)

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

2005 (2)

2004 (1)

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

1999 (2)

1994 (1)

1988 (2)

D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

1986 (1)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Balda, R.

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Basiev, T. T.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef]

Braun, B.

Burakevich, V. N.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Cerný, P.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Chang, J.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Dekker, P.

A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
[CrossRef] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Demidovich, A. A.

Ding, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
[CrossRef]

Fan, L.

Fan, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Fan, Y. X.

Ferguson, A. I.

D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
[CrossRef]

Fernández, J.

Findeisen, J.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Gad, G. M. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

García-Sole, J.

Grabtchikov, A. S.

Hanna, D. C.

D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
[CrossRef]

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[CrossRef]

Jaque, D.

Jelinkova, H.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Jia, P.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
[CrossRef]

Keller, U.

Kiefer, W.

Klassen, N. V.

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Lee, A. J.

Li, L. E.

Li, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Li, Y. Q.

Lisinetskii, V. A.

Liu, Z.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Lu, J. R.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Orlovich, V. A.

Osiko, V. V.

Pask, H. M.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Phillips, M. W.

D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
[CrossRef]

Piper, J. A.

Pointer, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[CrossRef]

Powell, R. C.

Pratt, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Redkin, B. S.

Smart, R. G.

D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
[CrossRef]

Sobol, A. A.

Spence, D. J.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

Su, F.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Suni, P. J.

D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
[CrossRef]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
[CrossRef]

Wang, H. T.

Wang, J.

Wang, Q.

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Weingarten, K. J.

Zhang, H. J.

Zhang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Zhang, X.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

Zverev, P. G.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 22, 927–933 (2006).
[CrossRef]

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ Laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Opt. Commun. (2)

D. C. Hanna, R. G. Smart, P. J. Suni, A. I. Ferguson, and M. W. Phillips, “Measurements of fibre laser losses via relaxation oscillations,” Opt. Commun. 68(2), 128–132 (1988).
[CrossRef]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. R. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Prog. Quantum Electron. (1)

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif. 1986) Chap. 25, pp. 962–964; Chap. 11, pp. 428–429.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of a CW intracavity Raman laser.

Fig. 2
Fig. 2

Measured ω2 vs absorbed pumped power in (a) 20 mm long crystal with mirror sets A and sets B; (b) 10 mm and 20 mm crystals with mirror set A. The error bar was ± 1.5% for every point.

Tables (1)

Tables Icon

Table 1 Reflectivity of the two sets of cavity mirrors at fundamental and Stokes wavelengths.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ω 2 = k F P b F k F = A C ;     b F = 1 τ τ F ;     A = λ p h c V ;     C = c σ l c L
d N d t = A P B N I F N τ d I F d t = C N I F D I F I S I F τ F d I S d t = E I F I S I S τ S B = 2 λ F σ h c ;     D = 2 c g R l R λ S A L L λ F A R ;     E = 2 c g R l R A L L A R
N = N 0 + Δ N ;     I F = I F 0 + Δ I F ;     I S = I S 0 + Δ I S
N 0 A E P τ S B ;     I F 0 = 1 E τ S ;     I S 0 1 D ( A C E P τ S B 1 τ F )
P t h = δ F δ S A R 4 g R l R λ F λ P
d Δ N d t = Δ N ( B I F 0 + 1 τ ) Δ I F B N 0 d Δ I F d t = C I F 0 Δ N D I F 0 Δ I S d Δ I S d t = E I S 0 Δ I F
p 3 + G p 2 + I F 0 ( C B N 0 + D E I S 0 ) p + G D E I F 0 I S 0 = 0 G = B I F 0 + 1 τ
ω 2 = k S P b S k S A C ( 1 + E B ) ; b S = 1 τ F τ S
g R    e f f = λ F σ L h c 2 l R ( k S k F 1 ) = η g R
δ S = c 2 L τ b S b F

Metrics