Abstract

We propose and numerically investigate a versatile and easy-to-realize configuration for a guided-wave voltage-tunable distributed feedback grating based on reorientation in nematic liquid crystal and coplanar comb electrodes. The device has a wide tuning range exceeding 100 nm and covers C and L bands for wavelength division multiplexing.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
    [CrossRef]
  2. K. J. Kim, J. K. Seo, and M. C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
    [CrossRef] [PubMed]
  3. G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
    [CrossRef]
  4. M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three dimensional hollow waveguide,” Appl. Phys. Lett. 94(6), 061112 (2009).
    [CrossRef]
  5. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
    [CrossRef]
  6. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
    [CrossRef] [PubMed]
  7. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
    [CrossRef] [PubMed]
  8. H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable planar polymer Bragg gratings having exceptionally low polarization sensitivity,” J. Lightwave Technol. 21(4), 1083–1088 (2003).
    [CrossRef]
  9. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993).
    [CrossRef]
  10. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express 17(21), 18518–18524 (2009).
    [CrossRef]
  11. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
    [CrossRef]
  12. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
    [CrossRef] [PubMed]
  13. F. Heismann, L. L. Buhl, and R. Alferness, “Electro-optically tunable, narrowband Ti:LiNbO3 wavelength filter,” Electron. Lett. 23(11), 572–574 (1987).
    [CrossRef]
  14. A. d’Alessandro, D. A. Smith, and J. E. Baran, “Polarisation-independent low power integrated acousto-optic tunable filter/switch using APE/Ti polarisation splitters on lithium niobate,” Electron. Lett. 29(20), 1767–1769 (1993).
    [CrossRef]
  15. F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
    [CrossRef]
  16. A. Iocco, H. G. Limberger, R. Salathe, L. A. Everall, K. Chisholm, J. Williams, and I. Bennion, “Bragg gratings fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17(7), 1217–1221 (1999).
    [CrossRef]
  17. B. Srinivasan and R. K. Jain, “First demonstration of thermally poled electrooptically tunable fiber Bragg gratings,” Photon. Technol. Lett. 12(2), 170–172 (2000).
    [CrossRef]
  18. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
    [CrossRef]
  19. A. Hosseini and Y. Massoud, “A low-loss metal-insulator plasmonic Bragg reflector,” Opt. Express 14(23), 11318–11323 (2006).
    [CrossRef]
  20. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009).
    [CrossRef] [PubMed]
  21. I. Fujieda, O. Mikami, and A. Ozawa, “Active optical interconnect based on liquid-crystal grating,” Appl. Opt. 42(8), 1520–1525 (2003).
    [CrossRef] [PubMed]
  22. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
    [CrossRef] [PubMed]
  23. D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)
  24. F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100 GHz electrically tunable liquid-crystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32(11), 1542–1544 (2007).
    [CrossRef] [PubMed]
  25. A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
    [CrossRef] [PubMed]
  26. G. Assanto and G. I. Stegeman, “Optical bistability in nonlocally nonlinear periodic structures,” Appl. Phys. Lett. 56(23), 2285–2287 (1990).
    [CrossRef]
  27. G. Assanto, “All-optical integrated nonlinear devices,” J. Mod. Opt. 37, 855–863 (1990).
    [CrossRef]
  28. J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56(7), 602–604 (1990).
    [CrossRef]
  29. C. Conti, G. Assanto, and S. Trillo, “Excitation of self-transparency Bragg solitons in quadratic media,” Opt. Lett. 22(17), 1350–1352 (1997).
    [CrossRef]
  30. D. Donisi, R. Asquini, A. d’Alessandro, and G. Assanto, “Distributed feedback grating in liquid crystal waveguide: a novel approach,” Opt. Express 17(7), 5251–5256 (2009).
    [CrossRef] [PubMed]
  31. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
    [CrossRef]

2009 (9)

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three dimensional hollow waveguide,” Appl. Phys. Lett. 94(6), 061112 (2009).
[CrossRef]

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

D. Donisi, R. Asquini, A. d’Alessandro, and G. Assanto, “Distributed feedback grating in liquid crystal waveguide: a novel approach,” Opt. Express 17(7), 5251–5256 (2009).
[CrossRef] [PubMed]

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
[CrossRef] [PubMed]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
[CrossRef] [PubMed]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009).
[CrossRef] [PubMed]

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[CrossRef] [PubMed]

R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
[CrossRef] [PubMed]

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express 17(21), 18518–18524 (2009).
[CrossRef]

2008 (4)

K. J. Kim, J. K. Seo, and M. C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
[CrossRef] [PubMed]

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

2007 (2)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

F. R. M. Adikan, J. C. Gates, A. Dyadyusha, H. E. Major, C. B. E. Gawith, I. J. G. Sparrow, G. D. Emmerson, M. Kaczmarek, and P. G. R. Smith, “Demonstration of 100 GHz electrically tunable liquid-crystal Bragg gratings for application in dynamic optical networks,” Opt. Lett. 32(11), 1542–1544 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Hosseini and Y. Massoud, “A low-loss metal-insulator plasmonic Bragg reflector,” Opt. Express 14(23), 11318–11323 (2006).
[CrossRef]

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

2003 (3)

2001 (1)

2000 (1)

B. Srinivasan and R. K. Jain, “First demonstration of thermally poled electrooptically tunable fiber Bragg gratings,” Photon. Technol. Lett. 12(2), 170–172 (2000).
[CrossRef]

1999 (1)

1997 (1)

1994 (1)

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

1993 (2)

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Polarisation-independent low power integrated acousto-optic tunable filter/switch using APE/Ti polarisation splitters on lithium niobate,” Electron. Lett. 29(20), 1767–1769 (1993).
[CrossRef]

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993).
[CrossRef]

1990 (3)

G. Assanto and G. I. Stegeman, “Optical bistability in nonlocally nonlinear periodic structures,” Appl. Phys. Lett. 56(23), 2285–2287 (1990).
[CrossRef]

G. Assanto, “All-optical integrated nonlinear devices,” J. Mod. Opt. 37, 855–863 (1990).
[CrossRef]

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56(7), 602–604 (1990).
[CrossRef]

1987 (1)

F. Heismann, L. L. Buhl, and R. Alferness, “Electro-optically tunable, narrowband Ti:LiNbO3 wavelength filter,” Electron. Lett. 23(11), 572–574 (1987).
[CrossRef]

Adikan, F. R. M.

Alferness, R.

F. Heismann, L. L. Buhl, and R. Alferness, “Electro-optically tunable, narrowband Ti:LiNbO3 wavelength filter,” Electron. Lett. 23(11), 572–574 (1987).
[CrossRef]

Allen, T.

Aramaki, S.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993).
[CrossRef]

Asquini, R.

Assanto, G.

D. Donisi, R. Asquini, A. d’Alessandro, and G. Assanto, “Distributed feedback grating in liquid crystal waveguide: a novel approach,” Opt. Express 17(7), 5251–5256 (2009).
[CrossRef] [PubMed]

C. Conti, G. Assanto, and S. Trillo, “Excitation of self-transparency Bragg solitons in quadratic media,” Opt. Lett. 22(17), 1350–1352 (1997).
[CrossRef]

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993).
[CrossRef]

G. Assanto, “All-optical integrated nonlinear devices,” J. Mod. Opt. 37, 855–863 (1990).
[CrossRef]

G. Assanto and G. I. Stegeman, “Optical bistability in nonlocally nonlinear periodic structures,” Appl. Phys. Lett. 56(23), 2285–2287 (1990).
[CrossRef]

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56(7), 602–604 (1990).
[CrossRef]

Baets, R.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

Baran, J. E.

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Polarisation-independent low power integrated acousto-optic tunable filter/switch using APE/Ti polarisation splitters on lithium niobate,” Electron. Lett. 29(20), 1767–1769 (1993).
[CrossRef]

Beccherelli, R.

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)

Beeson, K. W.

Bennion, I.

Bogaerts, W.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

Brouckaert, J.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

Bruns, J.

Buhl, L. L.

F. Heismann, L. L. Buhl, and R. Alferness, “Electro-optically tunable, narrowband Ti:LiNbO3 wavelength filter,” Electron. Lett. 23(11), 572–574 (1987).
[CrossRef]

Butler, S. A.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Caputo, R.

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)

Chisholm, K.

Cho, S. H.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Conti, C.

d’Alessandro, A.

D. Donisi, R. Asquini, A. d’Alessandro, and G. Assanto, “Distributed feedback grating in liquid crystal waveguide: a novel approach,” Opt. Express 17(7), 5251–5256 (2009).
[CrossRef] [PubMed]

D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Polarisation-independent low power integrated acousto-optic tunable filter/switch using APE/Ti polarisation splitters on lithium niobate,” Electron. Lett. 29(20), 1767–1769 (1993).
[CrossRef]

De Sio, L.

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)

DeCorby, R. G.

Donisi, D.

Dumon, P.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

Dyadyusha, A.

Edura, T.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

Ehrlich, J. E.

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56(7), 602–604 (1990).
[CrossRef]

Emmerson, G. D.

Epp, E.

Everall, L. A.

Fujieda, I.

Gajda, A.

Gates, J. C.

Gawith, C. B. E.

Giuntoni, I.

Goh, C. S.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Gong, Y.

Grenier, J. R.

Harizi, C.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Hastings, J. T.

Heismann, F.

F. Heismann, L. L. Buhl, and R. Alferness, “Electro-optically tunable, narrowband Ti:LiNbO3 wavelength filter,” Electron. Lett. 23(11), 572–574 (1987).
[CrossRef]

Herman, P. R.

Herrmann, H.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Ho, S.

Honda, S.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

Hosseini, A.

Hu, X.

Huang, H.

Huang, T. J.

Ibsen, M.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Iocco, A.

Jain, R. K.

B. Srinivasan and R. K. Jain, “First demonstration of thermally poled electrooptically tunable fiber Bragg gratings,” Photon. Technol. Lett. 12(2), 170–172 (2000).
[CrossRef]

Jeong, G.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Kaczmarek, M.

Khoo, I. C.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

Kikuchi, K.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Kim, B. W.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Kim, C. Y.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Kim, K. J.

Koyama, F.

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
[CrossRef] [PubMed]

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three dimensional hollow waveguide,” Appl. Phys. Lett. 94(6), 061112 (2009).
[CrossRef]

Krause, M.

Kumar, M.

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
[CrossRef] [PubMed]

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three dimensional hollow waveguide,” Appl. Phys. Lett. 94(6), 061112 (2009).
[CrossRef]

Lee, J. H.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Lee, W.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Li, X.

Limberger, H. G.

Liu, X.

Liu, Y. J.

Major, H. E.

Marciniak, M.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993).
[CrossRef]

Maselli, V.

Massoud, Y.

Matsui, J.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

McMullin, J. N.

Mikami, O.

Mokhtar, M. R.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Murphy, T. E.

Oh, M. C.

Ozawa, A.

Park, M. Y.

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

Petermann, K.

Ponnampalam, N.

Reimann, V.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Ricken, R.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Rust, U.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Sakaguchi, T.

M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009).
[CrossRef] [PubMed]

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three dimensional hollow waveguide,” Appl. Phys. Lett. 94(6), 061112 (2009).
[CrossRef]

Salathe, R.

Selvaraja, S.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

Seo, J. K.

Set, S. Y.

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Shacklette, L. W.

Shi, J.

Smith, D. A.

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Polarisation-independent low power integrated acousto-optic tunable filter/switch using APE/Ti polarisation splitters on lithium niobate,” Electron. Lett. 29(20), 1767–1769 (1993).
[CrossRef]

Smith, H. I.

Smith, P. G. R.

Sohler, W.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Sparrow, I. J. G.

Srinivasan, B.

B. Srinivasan and R. K. Jain, “First demonstration of thermally poled electrooptically tunable fiber Bragg gratings,” Photon. Technol. Lett. 12(2), 170–172 (2000).
[CrossRef]

Stegeman, G. I.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993).
[CrossRef]

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56(7), 602–604 (1990).
[CrossRef]

G. Assanto and G. I. Stegeman, “Optical bistability in nonlocally nonlinear periodic structures,” Appl. Phys. Lett. 56(23), 2285–2287 (1990).
[CrossRef]

Steingrüber, R.

Tian, F.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Tokuda, M.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

Trillo, S.

Tsuitsui, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

Umeton, C.

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)

Utaka, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

Van Thourhout, D.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

Wada, Y.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

Walker, T. R.

Wang, L.

Wehrmann, F.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Westenhofer, S.

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

Williams, J.

Wu, Z.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

Zheng, Y. B.

Zou, H.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Kumar, T. Sakaguchi, and F. Koyama, “Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three dimensional hollow waveguide,” Appl. Phys. Lett. 94(6), 061112 (2009).
[CrossRef]

G. Assanto and G. I. Stegeman, “Optical bistability in nonlocally nonlinear periodic structures,” Appl. Phys. Lett. 56(23), 2285–2287 (1990).
[CrossRef]

J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56(7), 602–604 (1990).
[CrossRef]

Electron. Lett. (3)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsuitsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630-631 (2007).
[CrossRef]

F. Heismann, L. L. Buhl, and R. Alferness, “Electro-optically tunable, narrowband Ti:LiNbO3 wavelength filter,” Electron. Lett. 23(11), 572–574 (1987).
[CrossRef]

A. d’Alessandro, D. A. Smith, and J. E. Baran, “Polarisation-independent low power integrated acousto-optic tunable filter/switch using APE/Ti polarisation splitters on lithium niobate,” Electron. Lett. 29(20), 1767–1769 (1993).
[CrossRef]

J. Lightwave Technol. (5)

F. Tian, C. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhofer, “Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO3,” J. Lightwave Technol. 12(7), 1192–1197 (1994).
[CrossRef]

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11(7), 1189–1195 (1993).
[CrossRef]

A. Iocco, H. G. Limberger, R. Salathe, L. A. Everall, K. Chisholm, J. Williams, and I. Bennion, “Bragg gratings fast tunable filter for wavelength division multiplexing,” J. Lightwave Technol. 17(7), 1217–1221 (1999).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and Characterization of Narrow-Band Bragg-Reflection Filters in Silicon-on-Insulator Ridge Waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
[CrossRef]

H. Zou, K. W. Beeson, and L. W. Shacklette, “Tunable planar polymer Bragg gratings having exceptionally low polarization sensitivity,” J. Lightwave Technol. 21(4), 1083–1088 (2003).
[CrossRef]

J. Mod. Opt. (1)

G. Assanto, “All-optical integrated nonlinear devices,” J. Mod. Opt. 37, 855–863 (1990).
[CrossRef]

Mol. Cryst. Liq. Cryst (1)

D. Donisi, A. d’Alessandro, R. Asquini, R. Beccherelli, L. De Sio, R. Caputo, and C. Umeton, “Realization of an optical filter using POLICRYPS holographic gratings on glass waveguides,” Mol. Cryst. Liq. Cryst . 486, 31/[1073]-37/[1079] (2008)

Opt. Express (8)

A. Hosseini and Y. Massoud, “A low-loss metal-insulator plasmonic Bragg reflector,” Opt. Express 14(23), 11318–11323 (2006).
[CrossRef]

K. J. Kim, J. K. Seo, and M. C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008).
[CrossRef] [PubMed]

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

D. Donisi, R. Asquini, A. d’Alessandro, and G. Assanto, “Distributed feedback grating in liquid crystal waveguide: a novel approach,” Opt. Express 17(7), 5251–5256 (2009).
[CrossRef] [PubMed]

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
[CrossRef] [PubMed]

Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009).
[CrossRef] [PubMed]

R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
[CrossRef] [PubMed]

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express 17(21), 18518–18524 (2009).
[CrossRef]

Opt. Lett. (4)

Photon. Technol. Lett. (4)

G. Jeong, J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, and B. W. Kim, “Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks,” Photon. Technol. Lett. 18(20), 2102–2104 (2006).
[CrossRef]

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” Photon. Technol. Lett. 20(4), 309–311 (2008).
[CrossRef]

B. Srinivasan and R. K. Jain, “First demonstration of thermally poled electrooptically tunable fiber Bragg gratings,” Photon. Technol. Lett. 12(2), 170–172 (2000).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, “Wavelength tuning of fiber Bragg gratings over 90nm using a simple tuning package,” Photon. Technol. Lett. 15(4), 557–559 (2003).
[CrossRef]

Phys. Rep. (1)

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (2756 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) 3D sketch of the Bragg reflector and (inset) molecular director n ^ , (b) top view of the coplanar comb electrode pattern in ITO.

Fig. 2
Fig. 2

Sketch of liquid crystal reorientation above the electrode area (in brown) for (a) V = 0 and (b) V > 0V.

Fig. 3
Fig. 3

Refractive index profile for e-polarization in (a,c,e) z = 0μm and (b,d,f) z = 0.25μm. The bias is 2.4V in (a,b), 5V in (c,d) and 13V in (e,f). The electrodes are in white. (g) Intensity profile of the TE00 eigenmode at 1550nm and V = 5V.

Fig. 4
Fig. 4

(a) Refractive index modulation along z for applied voltages between 2.8V (bottom line) and 4.5V (top line) in 0.1V steps, evaluated 200nm above the electrodes and in the symmetry axis between them (y = 0). A video (Media 1) shows a top-view of the index distribution versus applied voltage. (b) Corresponding longitudinal modulation versus applied voltage.

Fig. 5
Fig. 5

Bragg resonant wavelength versus applied voltage.

Fig. 6
Fig. 6

Spectral reflectivity for various voltages and propagation over 1.5mm (3000 periods). FWHM from left to right are 0.56nm (1.52076μm), 0.85nm (1.5299μm), 1.3nm (1.54219μm), 1.7nm (1.55394μm), 2.1nm (1.56731μm), 2.3nm (1.58108μm), 2.2nm (1.59565μm), 1.6nm (1.61032μm), 1.0nm (1.62052μm) and 0.60nm (1.6246μm).

Fig. 7
Fig. 7

(a) Bragg reflectivity and (b) FWHM versus voltage for a few propagation lengths L in mm: 0.5 (blue), 1.5 (red), 3 (green), 5 (violet), 8 (black).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F = F elastic [ 1 2 ε 0 ε | E | 2 + 1 2 ε 0 Δ ε ( E n ^ ) 2 ] d v
F elastic = { 1 2 K 11 ( n ^ ) 2 + 1 2 K 22 [ n ^ ( × n ^ ) ] 2 + 1 2 K 33 [ n ^ × ( × n ^ ) ] 2 } d v
[ V + Δ ε ( V n ^ ) n ^ ] = 0
K 2 φ Δ ε | E y | 2 2 sin 2 φ = 0

Metrics