Abstract

We present a broadband vibrational sum frequency generation (BB-VSFG) scheme using a novel ps visible pulse shape. We generate the fs IR pulse via standard procedures and simultaneously generate an ‘inverted’ time-asymmetric narrowband ps visible pulse via second harmonic generation in the pump depletion regime using a very long nonlinear crystal which has high group velocity mismatch (LiNbO3). The ‘inverted’ ps pulse shape minimally samples the instantaneous nonresonant response but maximally samples the resonant response, maintaining high spectral resolution. We experimentally demonstrate this scheme, presenting SFG spectra of canonical organic monolayer systems in the C-H stretch region (2800-3000 cm−1).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988).
    [CrossRef]
  2. M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
    [CrossRef] [PubMed]
  3. J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100(18), 7617–7622 (1996).
    [CrossRef]
  4. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).
    [CrossRef]
  5. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 mu m) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000).
    [CrossRef]
  6. M. K. Reed and M. K. S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32(8), 1273–1277 (1996).
    [CrossRef]
  7. H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
    [CrossRef] [PubMed]
  8. A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, “Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers,” J. Phys. Chem. B 109(33), 15941–15949 (2005).
    [CrossRef]
  9. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
    [CrossRef]
  10. M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
    [CrossRef]
  11. P. Guyot-Sionnest, “Coherent processes at surfaces: Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111),” Phys. Rev. Lett. 66(11), 1489–1492 (1991).
    [CrossRef] [PubMed]
  12. J. C. Diels, and W. Rudolph, Ultrafast Laser Pulse Phenomena (Academic Press, 1996).
  13. J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12(1), 7–9 (1968).
    [CrossRef]
  14. M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
    [CrossRef]
  15. M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000).
    [CrossRef]
  16. I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
    [CrossRef] [PubMed]

2009

H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
[CrossRef] [PubMed]

2008

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[CrossRef] [PubMed]

2007

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[CrossRef]

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

2005

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, “Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers,” J. Phys. Chem. B 109(33), 15941–15949 (2005).
[CrossRef]

2003

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

2000

M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000).
[CrossRef]

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 mu m) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000).
[CrossRef]

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

1998

1996

J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100(18), 7617–7622 (1996).
[CrossRef]

M. K. Reed and M. K. S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32(8), 1273–1277 (1996).
[CrossRef]

1991

P. Guyot-Sionnest, “Coherent processes at surfaces: Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111),” Phys. Rev. Lett. 66(11), 1489–1492 (1991).
[CrossRef] [PubMed]

1988

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988).
[CrossRef]

1968

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12(1), 7–9 (1968).
[CrossRef]

Allen, H. C.

H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
[CrossRef] [PubMed]

Belkin, M. A.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Benderskii, A. V.

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[CrossRef] [PubMed]

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, “Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers,” J. Phys. Chem. B 109(33), 15941–15949 (2005).
[CrossRef]

Bonn, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

Bordenyuk, A. N.

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[CrossRef] [PubMed]

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, “Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers,” J. Phys. Chem. B 109(33), 15941–15949 (2005).
[CrossRef]

Buck, M.

M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000).
[CrossRef]

Casillas-Ituarte, N. N.

H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
[CrossRef] [PubMed]

Chen, X. K.

H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
[CrossRef] [PubMed]

Comly, J.

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12(1), 7–9 (1968).
[CrossRef]

Conboy, J. C.

J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100(18), 7617–7622 (1996).
[CrossRef]

de Lange, C. A.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Dlott, D. D.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[CrossRef]

Eisert, F.

M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000).
[CrossRef]

Ernst, K. H.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Garmire, E.

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12(1), 7–9 (1968).
[CrossRef]

Grunze, M.

M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000).
[CrossRef]

Guyot-Sionnest, P.

P. Guyot-Sionnest, “Coherent processes at surfaces: Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111),” Phys. Rev. Lett. 66(11), 1489–1492 (1991).
[CrossRef] [PubMed]

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988).
[CrossRef]

Hambir, S. A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[CrossRef]

Himmelhaus, M.

M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000).
[CrossRef]

Hunt, J. H.

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988).
[CrossRef]

Jayathilake, H.

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, “Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers,” J. Phys. Chem. B 109(33), 15941–15949 (2005).
[CrossRef]

Jayathilake, H. D.

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[CrossRef] [PubMed]

Kim, D.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

Kulakov, T. A.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Lagutchev, A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[CrossRef]

Messmer, M. C.

J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100(18), 7617–7622 (1996).
[CrossRef]

Muller, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

Noack, F.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 mu m) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000).
[CrossRef]

Petralli-Mallow, T. P.

Petrov, V.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 mu m) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000).
[CrossRef]

Rayner, D. M.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Reed, M. K.

M. K. Reed and M. K. S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32(8), 1273–1277 (1996).
[CrossRef]

Richmond, G. L.

J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100(18), 7617–7622 (1996).
[CrossRef]

Richter, L. J.

Rotermund, F.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 mu m) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000).
[CrossRef]

Schmitt, M.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Schultz, T.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Shaffer, J. P.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Shen, Y. R.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988).
[CrossRef]

Shepard, M. K. S.

M. K. Reed and M. K. S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32(8), 1273–1277 (1996).
[CrossRef]

Sierra-Hernández, M. R.

H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
[CrossRef] [PubMed]

Smits, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Sovago, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

Stephenson, J. C.

Stiopkin, I. V.

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[CrossRef] [PubMed]

Stolow, A.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Superfine, R.

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988).
[CrossRef]

Tang, C. Y.

H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
[CrossRef] [PubMed]

Ullrich, S.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Underwood, J. G.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Wurpel, G. W. H.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

Yan, L.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12(1), 7–9 (1968).
[CrossRef]

Chem. Phys. Lett.

P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144(1), 1–5 (1988).
[CrossRef]

IEEE J. Quantum Electron.

M. K. Reed and M. K. S. Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32(8), 1273–1277 (1996).
[CrossRef]

J. Am. Chem. Soc.

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[CrossRef] [PubMed]

J. Phys. Chem.

J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100(18), 7617–7622 (1996).
[CrossRef]

J. Phys. Chem. B

A. N. Bordenyuk, H. Jayathilake, and A. V. Benderskii, “Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers,” J. Phys. Chem. B 109(33), 15941–15949 (2005).
[CrossRef]

M. Himmelhaus, F. Eisert, M. Buck, and M. Grunze, “Self-assembly of n-alkanethiol monolayers. A study by IR-visible sum frequency spectroscopy (SFG),” J. Phys. Chem. B 104(3), 576–584 (2000).
[CrossRef]

J. Phys. Chem. C

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[CrossRef]

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[CrossRef]

Opt. Commun.

F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4-12 mu m) using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000).
[CrossRef]

Opt. Lett.

Phys. Chem. Chem. Phys.

H. C. Allen, N. N. Casillas-Ituarte, M. R. Sierra-Hernández, X. K. Chen, and C. Y. Tang, “Shedding light on water structure at air-aqueous interfaces: ions, lipids, and hydration,” Phys. Chem. Chem. Phys. 11(27), 5538–5549 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. A. Belkin, T. A. Kulakov, K. H. Ernst, L. Yan, and Y. R. Shen, “Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality,” Phys. Rev. Lett. 85(21), 4474–4477 (2000).
[CrossRef] [PubMed]

P. Guyot-Sionnest, “Coherent processes at surfaces: Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111),” Phys. Rev. Lett. 66(11), 1489–1492 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

M. Smits, C. A. de Lange, S. Ullrich, T. Schultz, M. Schmitt, J. G. Underwood, J. P. Shaffer, D. M. Rayner, and A. Stolow, “Stable kilohertz rate molecular beam laser ablation sources,” Rev. Sci. Instrum. 74(11), 4812–4817 (2003).
[CrossRef]

Other

J. C. Diels, and W. Rudolph, Ultrafast Laser Pulse Phenomena (Academic Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of time domain pictures for BB-SFG and the effect of ps pulse shape of the SFG spectra. (a) resonant (red) and nonresonant (black) contributions to the oscillating first order polarization P(1)(t) . The ps visible pulse shapes, each with 24 cm−1 linewidth are shown: (b) the time-symmetric pulse from a 4f pulse shaper; (c) the time-asymmetric pulse shape from a Fabry-Perot étalon; (d) the ‘inverted’ time-asymmetric pulse shape obtained via second harmonic generation in a long LiNbO3 crystal. The BB-SFG spectra were calculated for two IR transitions, centered at 2880 cm−1 and 2920 cm−1, in the presence of a large (5 × ) NRB having a phase shift of π/2. The 150 fs IR laser pulse spectrum was centered at 2900 cm−1. The left column, (e), (f) and (g) shows results for a ps visible pulse of 24 cm−1 FWHM and resonance linewidths of 30 cm−1 FWHM. The right column, (h), (i) and (j) shows results for a narrow ps visible pulse of 10 cm−1 FWHM and narrow resonance linewidth of 12 cm−1. The effects of the shaped, delayed ps visible pulse are shown as a function of delay for: the 4f pulse shape in (e) and (h); the etalon pulse shape in (f) and (i); the inverted pulse shape in (g) and (j). The magnification relative to the short time (250 fs) response of the inverted pulse (solid black line in (g) and (j)) are given on the right of each spectrum. It can be seen that the signal levels decreases rapidly as a function of delay. The fs IR pulse spectrum is shown as a dashed line in (g) and (j). For comparison, ‘ideal’ spectra (without NRB) for both computed examples are given in (g) and (j). For discussion, see the text.

Fig. 2
Fig. 2

Schematic diagram of the optical system layout for broad band fs IR generation and simulataneous narrowband ps visible pulse generation. A fs OPA produced signal (S) and idler (I) pulses. These are different frequency mixed in a thin AgGaS2 crystal, producing fs IR pulses. The residual signal (S) is doubled in a long LiNbO3 crystal, producing a narrowband visible pulse having an inverted time-asymmetric profile, due to the SHG process.

Fig. 3
Fig. 3

The experimental cross correlation, shown as open blue circles, of the time-asymmetric pulse from a 2 cm LiNbO3 crystal. The thin red line shows the independent result from a calculation (no adjustable parameters). The inset shows the measured visible pulse spectrum, as blue circles, and, as the red line, the Fourier transform power spectrum of the computed deconvolved cross correlation shown in the main figure. For details, see the text.

Fig. 4
Fig. 4

BB-SFG spectra of 1-dodecanethiol SAM on gold for different IR and visible time-delays, recorded using PPP polarization. A time delay between the IR and visible is applied to minimally sample the NRB from gold and maximally sample the resonant signal.

Fig. 5
Fig. 5

BB-SFG spectra of: (a) 1-dodecanethiol SAM on gold using PPP polarization; (b) LB monolayer of DMPC under SSP polarization at two surface pressures; (c) 1-octanol air-water interface under SSP polarization. These results confirm the utility of the inverted pulse BB-SFG scheme.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ( 1 ) ( t ) = P N R ( 1 ) ( t ) + P R ( 1 ) ( t )
S ( t ) = { A N R exp ( i φ N R ) δ ( t ) i θ ( t ) j B j Γ j exp ( Γ j t i ω j t ) }
P ( 1 ) ( t ) = + E I R ( t t ' ) S ( t ' ) d t ' ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
P ( 2 ) ( t , τ ) E v i s ( t τ ) P ( 1 ) ( t )
I | P ( 2 ) ( ω , τ ) | 2 = | + P ( 2 ) ( t , τ ) exp ( i ω t ) d t | 2

Metrics