Abstract

We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400°C, the propagation loss of the ridge waveguides is determined to be as low as ~0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
    [CrossRef]
  2. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
    [CrossRef]
  3. W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
    [CrossRef]
  4. G. Lifante, Integrated Photonics: Fundamentals ‖Wiley, Atrium, 2008|.
  5. M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
    [CrossRef]
  6. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
    [CrossRef] [PubMed]
  7. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [CrossRef]
  8. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [CrossRef]
  9. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
    [CrossRef]
  10. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [CrossRef]
  11. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006).
    [CrossRef] [PubMed]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation” (Cambridge Univ. Press, Cambridge, 1994).
  13. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [CrossRef]
  14. F. Schrempel, Th. Gischkat, H. Hartung, Th. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
    [CrossRef] [PubMed]
  15. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
    [CrossRef]
  16. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
    [CrossRef]
  17. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
    [CrossRef] [PubMed]
  18. M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
    [CrossRef]
  19. H. Hartung, E.-B. Kley, A. Tünnermann, Th. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33(20), 2320–2322 (2008).
    [CrossRef] [PubMed]
  20. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [CrossRef]
  21. I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999).
    [CrossRef]
  22. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
    [CrossRef]
  23. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
    [CrossRef]
  24. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
    [CrossRef]
  25. Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
    [CrossRef]
  26. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
    [CrossRef]
  27. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992).
    [CrossRef] [PubMed]
  28. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [CrossRef]
  29. W. C. Liu, C. L. Mak, and K. H. Wong, “Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator,” Opt. Express 17(16), 13677–13684 (2009).
    [CrossRef] [PubMed]
  30. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
    [CrossRef]
  31. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  32. F. Schrempel, Th. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1-2), 164–168 (2006).
    [CrossRef]
  33. M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
    [CrossRef]

2009 (10)

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

F. Schrempel, Th. Gischkat, H. Hartung, Th. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
[CrossRef] [PubMed]

W. C. Liu, C. L. Mak, and K. H. Wong, “Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator,” Opt. Express 17(16), 13677–13684 (2009).
[CrossRef] [PubMed]

2008 (4)

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
[CrossRef] [PubMed]

H. Hartung, E.-B. Kley, A. Tünnermann, Th. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33(20), 2320–2322 (2008).
[CrossRef] [PubMed]

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

2007 (3)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
[CrossRef]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

2006 (3)

P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006).
[CrossRef] [PubMed]

F. Schrempel, Th. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1-2), 164–168 (2006).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

2005 (2)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

1999 (1)

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999).
[CrossRef]

1998 (1)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

1992 (1)

1989 (1)

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Abdi, F.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

Agulló-López, F.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Agulló-Rueda, F.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Aillerie, M.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

Alexakis, G.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

Bakhru, H.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

Bardyszewski, W.

Barry, I. E.

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bentini, G. G.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bergamini, F.

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

Bianconi, M.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Busacca, A. C.

Buse, K.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Caballero, O.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Cabrera, J. M.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Cantelar, E.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

Carabatos-Nedelec, C.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

Cerutti, A.

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

Chen, F.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Chiarini, M.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Cino, A.

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

Cussó, F.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

De Nicola, P.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

Eason, R. W.

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999).
[CrossRef]

Fontana, M. D.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

García, G.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Gischkat, Th.

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Guarino, A.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Günter, P.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
[CrossRef] [PubMed]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Haertle, D.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Hajfler, J.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Hartung, H.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Höche, Th.

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Jaque, D.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

Kar, A. K.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Kip, D.

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

Kley, E.-B.

Koechlin, M.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
[CrossRef] [PubMed]

Kösters, M.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
[CrossRef]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

Levy, M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

Lifante, G.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

Liu, W. C.

Ma, Y.

Majkic, A.

Mak, C. L.

Martín Rodríguez, E.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Montanari, G. B.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Moretti, P.

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
[CrossRef]

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Nubile, A.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Olivares, J.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Osgood, R. M.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

Pennestrì, G.

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

Poberaj, G.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
[CrossRef] [PubMed]

Quintanilla, M.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Rivera, A.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Rodríguez, E. M.

Ross, G. W.

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Sanseverino, S. R.

Sanz-García, J. A.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

Schrempel, F.

Smith, P. G. R.

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999).
[CrossRef]

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

Sturman, B.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Sugliani, S.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

Sulser, F.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Tan, Y.

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

Theofanous, N.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

Thomson, R. R.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Tünnermann, A.

Vannahme, Ch.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Wang, X. L.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Werheit, P.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Wesch, W.

Wong, K. H.

Xu, H.

Yang, D.

Yevick, D.

Zhang, P.

Zhao, J.

Appl. Opt. (1)

Appl. Phys. B (2)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999).
[CrossRef]

J. Appl. Phys. (4)

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989).
[CrossRef]

J. Lumin. (1)

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009).
[CrossRef]

Nat. Photonics (1)

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (3)

F. Schrempel, Th. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1-2), 164–168 (2006).
[CrossRef]

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009).
[CrossRef]

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008).
[CrossRef]

Opt. Acta (Lond.) (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (2)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Opt. Photon. News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008).
[CrossRef]

Phys. Stat. Solidi A (1)

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009).
[CrossRef]

Phys. Status Solidi, A Appl. Res. (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

Other (3)

G. Lifante, Integrated Photonics: Fundamentals ‖Wiley, Atrium, 2008|.

P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation” (Cambridge Univ. Press, Cambridge, 1994).

J. F. Ziegler, computer code, SRIM http://www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic plots of the ridge waveguide fabrication process. The inset shows the microscope image of the ridge waveguide cross section.

Fig. 2
Fig. 2

The defect concentration n da (solid line) and relative displacement of the original atoms n dpa (dashed line) for the as-implanted LiNbO3 implanted by protons at energies of (475 + 500) keV and fluences of (3.6 + 6) × 1016 cm−2.

Fig. 3
Fig. 3

The refractive index profile of the 1D planar waveguide (a) and 2D ridge waveguide (b); the calculated modal profile (c) and the measured intensity distribution of the TM00 mode in 3D plots.

Fig. 4
Fig. 4

The measured temperature dependence of the a) n o and b) n e in the waveguide and bulk.

Metrics