Abstract

Coherent-detection (CoD) permits to fully exploit the four-dimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarization-switched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger, T. Duthel, D. Van Den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, E. De Man, G. D. Khoe, and H. De Waardt, “10x111 Gbit/s, 50 GHz Spaced, POLMUX-RZ-DQPSK Transmission over 2375 km Employing Coherent Equalisation,” in Proc. of OFC 2007, Anaheim (CA), Feb. 2007, post-deadline paper PDP-22.
  2. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran-Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4 Tbit/s Capacity over 2,550 km Using PDM QPSK Modulation Format and Coherent Receiver,” in Proc. of OFC 2008, San Diego (CA), Feb. 2008, post-deadline paper PDP-3.
  3. K. Roberts, “Performance of Dual-Polarization QPSK for Optical Transport Systems,” J. Lightwave Technol. 27, 3546–3559 (2009).
    [CrossRef]
  4. M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s Coherent PDM-QPSK Transmission over 7,200 km,” in Proc. ECOC 2009, in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, post-deadline paper PD2.5.
  5. J. Yu, M. F. Huang, and X. Zhou, “8x114Gbit/s, 25GHz Spaced, PolMux-RZ-8QAM Straight-Line Transmission over 800km of SSMF,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper P4.02.
  6. A. H. Gnauck, and P. J. Winzer, “10 112-Gb/s PDM 16-QAM Transmission over 1022 km of SSMF with a Spectral Efficiency of 4.1 b/s/Hz and no Optical Filtering,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper. 8.4.2.
  7. Y. Mori, C. Zhang, M. Usui, K. Igarashi, K. Katoh, and K. Kikuchi, “200-km transmission of 100-Gbit/s 32-QAM Dual-Polarization Signals using a Digital Coherent Receiver,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper 8.4.6.
  8. A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s Polarization-Multiplexed 64-QAM Modulation and Blind Detection Using PLC-LN Hybrid Integrated Modulator and Digital Coherent Receiver,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, post-deadline paper PD2.4.
  9. M. Nakazawa, “Optical Quadrature Amplitude Modulation (QAM) with Coherent Detection up to 128 States,” in Proc. of OFC 2009, San Diego (CA), Mar. 2009, paper OThG1.
  10. H. Bülow, “Polarization QAM Modulation (POLQAM) for Coherent Detection Schemes,” in Proc. of OFC 2009, San Diego (CA), Mar. 2009, paper OWG2.
  11. M. Karlsson, and E. Agrell, “Which Is the Most Power-Efficient Modulation Format in Optical Links?” Opt. Express 17, 10814–10819 (2009).
    [CrossRef] [PubMed]
  12. E. Agrell, and M. Karlsson, “Power-Efficient Modulation Formats in Coherent Transmission Systems,” J. Lightwave Technol. 27, 5115–5126 (2009).
    [CrossRef]
  13. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
    [CrossRef]
  14. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated Optics Eight-Port 90◦ Hybrid on LiNbO3,” J. Lightwave Technol. 7, 794–798 (1989).
    [CrossRef]
  15. E. Ip, and J. M. Kahn, “Digital Equalization of Chromatic Dispersion and Polarization Mode Dispersion,” J. Lightwave Technol. 25, 2033–2043 (2007).
    [CrossRef]
  16. A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems,” IEEE Photon. Technol. Lett. 21, 1514–1516 (2009).
    [CrossRef]
  17. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion Compensation and Mitigation of Non-Linear Effects in 111 Gb/s WDM Coherent PM-QPSK Systems,” IEEE Photon. Technol. Lett. 20, 1473–1475 (2008).
    [CrossRef]
  18. D. van den Borne, V. Sleiffer, M. Alfiad, S. Jansen, and T. Wuth, “POLMUX-QPSK modulation and coherent detection: the challenge of long-haul 100G transmission,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper 3.4.1.
  19. E. Grellier, J.-C. Antona, and S. Bigo, “Revisiting the evaluation of non-linear propagation impairments in highly dispersive systems,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper 10.4.2.
  20. D. Wang, and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technol. 17, 2520–2529 (1999).
    [CrossRef]

2010 (1)

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

2009 (4)

2008 (1)

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion Compensation and Mitigation of Non-Linear Effects in 111 Gb/s WDM Coherent PM-QPSK Systems,” IEEE Photon. Technol. Lett. 20, 1473–1475 (2008).
[CrossRef]

2007 (1)

1999 (1)

1989 (1)

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated Optics Eight-Port 90◦ Hybrid on LiNbO3,” J. Lightwave Technol. 7, 794–798 (1989).
[CrossRef]

Agrell, E.

Bosco, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems,” IEEE Photon. Technol. Lett. 21, 1514–1516 (2009).
[CrossRef]

Carena, A.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems,” IEEE Photon. Technol. Lett. 21, 1514–1516 (2009).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion Compensation and Mitigation of Non-Linear Effects in 111 Gb/s WDM Coherent PM-QPSK Systems,” IEEE Photon. Technol. Lett. 20, 1473–1475 (2008).
[CrossRef]

Curri, V.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems,” IEEE Photon. Technol. Lett. 21, 1514–1516 (2009).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion Compensation and Mitigation of Non-Linear Effects in 111 Gb/s WDM Coherent PM-QPSK Systems,” IEEE Photon. Technol. Lett. 20, 1473–1475 (2008).
[CrossRef]

Dietrich, E.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated Optics Eight-Port 90◦ Hybrid on LiNbO3,” J. Lightwave Technol. 7, 794–798 (1989).
[CrossRef]

Forghieri, F.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems,” IEEE Photon. Technol. Lett. 21, 1514–1516 (2009).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion Compensation and Mitigation of Non-Linear Effects in 111 Gb/s WDM Coherent PM-QPSK Systems,” IEEE Photon. Technol. Lett. 20, 1473–1475 (2008).
[CrossRef]

Freund, R.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

Gavioli, G.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

Heidrich, H.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated Optics Eight-Port 90◦ Hybrid on LiNbO3,” J. Lightwave Technol. 7, 794–798 (1989).
[CrossRef]

Hoffman, D.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated Optics Eight-Port 90◦ Hybrid on LiNbO3,” J. Lightwave Technol. 7, 794–798 (1989).
[CrossRef]

Ip, E.

Kahn, J. M.

Karlsson, M.

Langenhorst, R.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated Optics Eight-Port 90◦ Hybrid on LiNbO3,” J. Lightwave Technol. 7, 794–798 (1989).
[CrossRef]

Menyuk, C. R.

Miot, V.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

Molle, L.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

Poggiolini, P.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems,” IEEE Photon. Technol. Lett. 21, 1514–1516 (2009).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion Compensation and Mitigation of Non-Linear Effects in 111 Gb/s WDM Coherent PM-QPSK Systems,” IEEE Photon. Technol. Lett. 20, 1473–1475 (2008).
[CrossRef]

Roberts, K.

Savory, S. J.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

Torrengo, E.

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

Wang, D.

Wenke, G.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated Optics Eight-Port 90◦ Hybrid on LiNbO3,” J. Lightwave Technol. 7, 794–798 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems,” IEEE Photon. Technol. Lett. 21, 1514–1516 (2009).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion Compensation and Mitigation of Non-Linear Effects in 111 Gb/s WDM Coherent PM-QPSK Systems,” IEEE Photon. Technol. Lett. 20, 1473–1475 (2008).
[CrossRef]

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, F. Forghieri, S. J. Savory, L. Molle, and R. Freund, “NRZ-PM-QPSK 16x100 Gb/s Transmission over Installed Fiber with Different Dispersion Maps,” IEEE Photon. Technol. Lett. 22, 371–373 (2010).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (1)

Other (11)

D. van den Borne, V. Sleiffer, M. Alfiad, S. Jansen, and T. Wuth, “POLMUX-QPSK modulation and coherent detection: the challenge of long-haul 100G transmission,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper 3.4.1.

E. Grellier, J.-C. Antona, and S. Bigo, “Revisiting the evaluation of non-linear propagation impairments in highly dispersive systems,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper 10.4.2.

M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s Coherent PDM-QPSK Transmission over 7,200 km,” in Proc. ECOC 2009, in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, post-deadline paper PD2.5.

J. Yu, M. F. Huang, and X. Zhou, “8x114Gbit/s, 25GHz Spaced, PolMux-RZ-8QAM Straight-Line Transmission over 800km of SSMF,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper P4.02.

A. H. Gnauck, and P. J. Winzer, “10 112-Gb/s PDM 16-QAM Transmission over 1022 km of SSMF with a Spectral Efficiency of 4.1 b/s/Hz and no Optical Filtering,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper. 8.4.2.

Y. Mori, C. Zhang, M. Usui, K. Igarashi, K. Katoh, and K. Kikuchi, “200-km transmission of 100-Gbit/s 32-QAM Dual-Polarization Signals using a Digital Coherent Receiver,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, paper 8.4.6.

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s Polarization-Multiplexed 64-QAM Modulation and Blind Detection Using PLC-LN Hybrid Integrated Modulator and Digital Coherent Receiver,” in Proc. of ECOC 2009, Vienna (Austria), Sept. 2009, post-deadline paper PD2.4.

M. Nakazawa, “Optical Quadrature Amplitude Modulation (QAM) with Coherent Detection up to 128 States,” in Proc. of OFC 2009, San Diego (CA), Mar. 2009, paper OThG1.

H. Bülow, “Polarization QAM Modulation (POLQAM) for Coherent Detection Schemes,” in Proc. of OFC 2009, San Diego (CA), Mar. 2009, paper OWG2.

C. R. S. Fludger, T. Duthel, D. Van Den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, E. De Man, G. D. Khoe, and H. De Waardt, “10x111 Gbit/s, 50 GHz Spaced, POLMUX-RZ-DQPSK Transmission over 2375 km Employing Coherent Equalisation,” in Proc. of OFC 2007, Anaheim (CA), Feb. 2007, post-deadline paper PDP-22.

G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran-Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4 Tbit/s Capacity over 2,550 km Using PDM QPSK Modulation Format and Coherent Receiver,” in Proc. of OFC 2008, San Diego (CA), Feb. 2008, post-deadline paper PDP-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simulated receiver for both HEXA and PM-QPSK. LO: local oscillator; PBS: polarizing beam splitter; Bal: balanced photodetector; LPF: low-pass filter; CD FIR: chromatic dispersion compensating finite-impulse-response filter; POL FIR: polarization effects and residual impairments compensating FIR.

Fig. 2.
Fig. 2.

Test link: 20 spans made up of 90 km of either SSMF or NZDSF fiber, followed by an ideal DCU and a VOA. The gain of the EDFA equals the overall span loss. The DCU is not present in full-EDC simulations.

Fig. 3.
Fig. 3.

BER for ideal matched-filter Tx and Rx, vs. signal-to-noise ratio Eb /N0. All results at same bit-rate. Blue solid line: HEXA, analytical. Red dashed line: PM-QPSK, analytical. Dots and squares: simulations.

Fig. 4.
Fig. 4.

Span loss yielding BER=10−3 vs. launch power P TX. Test link made up of 20 spans of SSMF with full-EDC. Dashed lines show the performance in linearity.

Fig. 5.
Fig. 5.

Span loss yielding BER=10−3 vs. launch power P TX. Test link made up of 20 spans of SSMF with ODM. Dashed lines show the performance in linearity.

Fig. 6.
Fig. 6.

Span loss yielding BER=10−3 vs. launch power P TX. Test link made up of 20 spans of NZDSF with full-EDC. Dashed lines show the performance in linearity.

Fig. 7.
Fig. 7.

Span loss yielding BER=10−3 vs. launch power P TX. Test link made up of 20 spans of NZDSF with ODM. Dashed lines show the performance in linearity.

Tables (1)

Tables Icon

Table 1. Back-to-back sensitivity, expressed as Eb /N 0 needed to achieve BER=10−3. The label ‘theory’ refers to ideal matched-filter systems. The other cases assume ’realistic’ filtering as described in the text.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( E xp E xq E yp E yq ) =
( 1 , 1 , 1 , 1 )
( 1 , 1 , 1 , 1 )
( 1 , 1 , 1 , 1 , )
( 1 , 1 , 1 , 1 )
( 1 , 1 , 1 , 1 )
( 1 , 1 , 1 , 1 )
( 1 , 1 , 1 , 1 )
( 1 , 1 , 1 , 1 )
E ( t ) = ( E xp + j E xq ) x ̂ + ( E yp + j E yp ) y ̂
{ ( ± 2 , 0 , 0 , 0 ) ( 0 , ± 2 , 0 , 0 ) ( 0 , 0 , ± 2 , 0 ) ( 0 , 0 , 0 , ± 2 ) }
T = 1 2 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
OSNR = E b N 0 · R b 2 B N

Metrics