Abstract

We report the realization of coherent electro-optical detection of nanosecond terahertz (THz) pulses from an optical parametric oscillator, which is pumped by a Q-switched nanosecond Nd:YVO4 laser at 1064 nm and emits at ~ 1.5 THz. The beam profile and wavefront of the THz beam at focus are electro-optically characterized toward the realization of a real-time THz camera. A peak dynamic range of ~ 37 dB/ Hz is achieved with single-pixel detection.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
    [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [CrossRef]
  3. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef] [PubMed]
  4. C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
    [CrossRef]
  5. T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
    [CrossRef]
  6. A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
    [CrossRef]
  7. P. C. M. Planken and H. J. Bakker, “Towards time-resolved THz imaging,” Appl. Phys. A 78, 465–469 (2004).
    [CrossRef]
  8. M. J. Khan, J. C. Chen, and S. Kaushik, “Optical detection of terahertz using nonlinear parametric upconversion,” Opt. Lett. 33, 2725–2727 (2008).
    [CrossRef] [PubMed]
  9. Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [CrossRef]
  10. X. C. Zhang, “Three-dimensional terahertz wave imaging,” Phil. Trans. R. Soc. Lond. A 362, 283–299 (2004).
    [CrossRef]
  11. Z. Jiang and X. C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999).
    [CrossRef]
  12. T. Yasuda, Y. Kawada, H. Toyoda, and H. Takahashi, “Terahertz movies of internal transmission images,” Opt. Express 15, 15583–15588 (2007).
    [CrossRef] [PubMed]
  13. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
    [CrossRef]
  14. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
    [CrossRef]
  15. K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20, S258–S265 (2005).
    [CrossRef]
  16. T. D. Wang, Y. Y. Lin, S. Y. Chen, A. C. Chiang, S. T. Lin, and Y. C. Huang, “Low-threshold, narrow-line THz-wave parametric oscillator with an intra-cavity grazing-incidence grating,” Opt. Express 16, 12571–12576 (2008).
    [CrossRef] [PubMed]
  17. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17, 6623–6628 (2009).
    [CrossRef] [PubMed]
  18. R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
    [CrossRef]
  19. Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid State Electron. 50, 1128–1136 (2006).
    [CrossRef]
  20. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
    [CrossRef]
  21. T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
    [CrossRef]
  22. T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D: Appl. Phys. 37, 770–773 (2004).
    [CrossRef]
  23. T. Hattori and M. Sakamoto, “Deformation corrected real-time terahertz imaging,” Appl. Phys. Lett. 90, 261106 (2007).
    [CrossRef]
  24. Z. Jiang, F. G. Sun, Q. Chen, and X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
    [CrossRef]
  25. F. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197–5204 (2009).
    [CrossRef] [PubMed]
  26. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
    [CrossRef]
  27. C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
    [CrossRef]
  28. H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
    [CrossRef]

2009

2008

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
[CrossRef]

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

M. J. Khan, J. C. Chen, and S. Kaushik, “Optical detection of terahertz using nonlinear parametric upconversion,” Opt. Lett. 33, 2725–2727 (2008).
[CrossRef] [PubMed]

T. D. Wang, Y. Y. Lin, S. Y. Chen, A. C. Chiang, S. T. Lin, and Y. C. Huang, “Low-threshold, narrow-line THz-wave parametric oscillator with an intra-cavity grazing-incidence grating,” Opt. Express 16, 12571–12576 (2008).
[CrossRef] [PubMed]

2007

T. Yasuda, Y. Kawada, H. Toyoda, and H. Takahashi, “Terahertz movies of internal transmission images,” Opt. Express 15, 15583–15588 (2007).
[CrossRef] [PubMed]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

T. Hattori and M. Sakamoto, “Deformation corrected real-time terahertz imaging,” Appl. Phys. Lett. 90, 261106 (2007).
[CrossRef]

2006

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid State Electron. 50, 1128–1136 (2006).
[CrossRef]

2005

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20, S258–S265 (2005).
[CrossRef]

2004

X. C. Zhang, “Three-dimensional terahertz wave imaging,” Phil. Trans. R. Soc. Lond. A 362, 283–299 (2004).
[CrossRef]

P. C. M. Planken and H. J. Bakker, “Towards time-resolved THz imaging,” Appl. Phys. A 78, 465–469 (2004).
[CrossRef]

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D: Appl. Phys. 37, 770–773 (2004).
[CrossRef]

2002

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[CrossRef]

1999

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Z. Jiang and X. C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999).
[CrossRef]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[CrossRef]

Z. Jiang, F. G. Sun, Q. Chen, and X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

1997

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

1996

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

1995

1972

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Baker, C.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

Bakker, H. J.

P. C. M. Planken and H. J. Bakker, “Towards time-resolved THz imaging,” Appl. Phys. A 78, 465–469 (2004).
[CrossRef]

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Bauer, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Beigang, R.

Blank, V.

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Chen, J. C.

Chen, Q.

Z. Jiang, F. G. Sun, Q. Chen, and X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Chen, S. Y.

Chiang, A. C.

Cole, B. E.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

Coquillat, D.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Czasch, S.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Dienes, A.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Ding, Y. J.

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid State Electron. 50, 1128–1136 (2006).
[CrossRef]

Dyakonova, N.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Fatimy, A. E.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Guo, R.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
[CrossRef]

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Hattori, T.

T. Hattori and M. Sakamoto, “Deformation corrected real-time terahertz imaging,” Appl. Phys. Lett. 90, 261106 (2007).
[CrossRef]

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D: Appl. Phys. 37, 770–773 (2004).
[CrossRef]

Helm, H.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Hogbin, M. R.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

Hu, B. B.

Huang, Y. C.

Ikari, T.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
[CrossRef]

Ippen, E. P.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Ito, H.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
[CrossRef]

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20, S258–S265 (2005).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[CrossRef]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[CrossRef]

Jepsen, P. U.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Jiang, Z.

Z. Jiang, F. G. Sun, Q. Chen, and X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Z. Jiang and X. C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999).
[CrossRef]

Kaushik, S.

Kawada, Y.

Kawase, K.

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20, S258–S265 (2005).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[CrossRef]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[CrossRef]

Kemp, M. C.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

Khan, M. J.

Knap, W.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Kolb, J. S.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Leonhardt, R.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Lin, S. T.

Lin, Y. Y.

Lisauskas, A.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Lo, T.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

Löffler, T.

F. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197–5204 (2009).
[CrossRef] [PubMed]

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

May, T.

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Meng, F.

Minamide, H.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
[CrossRef]

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20, S258–S265 (2005).
[CrossRef]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Mohler, E.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Molter, D.

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Nuss, M. C.

Ogawa, Y.

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20, S258–S265 (2005).
[CrossRef]

Ohno, S.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
[CrossRef]

Ohta, K.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D: Appl. Phys. 37, 770–773 (2004).
[CrossRef]

Pernisz, U. C.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Planken, P. C. M.

P. C. M. Planken and H. J. Bakker, “Towards time-resolved THz imaging,” Appl. Phys. A 78, 465–469 (2004).
[CrossRef]

Quast, H.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Roskos, H. G.

F. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197–5204 (2009).
[CrossRef] [PubMed]

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Rungsawang, R.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D: Appl. Phys. 37, 770–773 (2004).
[CrossRef]

Sakamoto, M.

T. Hattori and M. Sakamoto, “Deformation corrected real-time terahertz imaging,” Appl. Phys. Lett. 90, 261106 (2007).
[CrossRef]

Sato, M.

Schall, M.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Schyja, V.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Shank, C. V.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Shi, W.

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid State Electron. 50, 1128–1136 (2006).
[CrossRef]

Shikata, J.

Siebert, K. J.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Sun, F. G.

Z. Jiang, F. G. Sun, Q. Chen, and X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Takahashi, H.

Taniuchi, T.

Teppe, F.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Theuer, M.

Thomson, M.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

Thomson, M. D.

Tombet, S. B.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Toyoda, H.

Tribe, W. R.

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

Tukamoto, K.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D: Appl. Phys. 37, 770–773 (2004).
[CrossRef]

von Spiegel, W.

F. Meng, M. D. Thomson, V. Blank, W. von Spiegel, T. Löffler, and H. G. Roskos, “Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging,” Appl. Opt. 48, 5197–5204 (2009).
[CrossRef] [PubMed]

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

Wang, T. D.

Winnewisser, C.

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Yasuda, T.

Zhang, X. C.

X. C. Zhang, “Three-dimensional terahertz wave imaging,” Phil. Trans. R. Soc. Lond. A 362, 283–299 (2004).
[CrossRef]

Z. Jiang and X. C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999).
[CrossRef]

Z. Jiang, F. G. Sun, Q. Chen, and X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Zhang, X.-C.

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. A

P. C. M. Planken and H. J. Bakker, “Towards time-resolved THz imaging,” Appl. Phys. A 78, 465–469 (2004).
[CrossRef]

Appl. Phys. B

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[CrossRef]

Appl. Phys. Lett.

T. Löffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett. 90, 091111 (2007).
[CrossRef]

Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996).
[CrossRef]

C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93, 021106 (2008).
[CrossRef]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80, 3003–3005 (2002).
[CrossRef]

T. Hattori and M. Sakamoto, “Deformation corrected real-time terahertz imaging,” Appl. Phys. Lett. 90, 261106 (2007).
[CrossRef]

Z. Jiang, F. G. Sun, Q. Chen, and X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999).
[CrossRef]

Electron. Lett.

A. Lisauskas, W. von Spiegel, S. B. Tombet, A. E. Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, “Terahertz imaging with GaAs field-effect transistors,” Electron. Lett. 44, 408–409 (2008).
[CrossRef]

IEEE J. Quantum Electron.

H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

Z. Jiang and X. C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999).
[CrossRef]

J. Appl. Phys.

T. Bauer, J. S. Kolb, T. Löffler, E. Mohler, H. G. Roskos, and U. C. Pernisz, “Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation,” J. Appl. Phys. 92, 2210–2212 (2002).
[CrossRef]

J. Phys. D: Appl. Phys.

T. Hattori, K. Ohta, R. Rungsawang, and K. Tukamoto, “Phase-sensitive high-speed THz imaging,” J. Phys. D: Appl. Phys. 37, 770–773 (2004).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D: Appl. Phys. 35, R1–R14 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phil. Trans. R. Soc. Lond. A

X. C. Zhang, “Three-dimensional terahertz wave imaging,” Phil. Trans. R. Soc. Lond. A 362, 283–299 (2004).
[CrossRef]

Proc. IEEE

C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” Proc. IEEE 95, 1559–1565 (2007).
[CrossRef]

Rep. Prog. Phys.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Semicond. Sci. Technol.

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20, S258–S265 (2005).
[CrossRef]

Solid State Electron.

Y. J. Ding and W. Shi, “Efficient THz generation and frequency upconversion in GaP crystals,” Solid State Electron. 50, 1128–1136 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The experimental setup for EO detection of THz radiation with the THz OPO. Lens groups F1 and F2 are a beam shrinker and expander, respectively. Mirror M1 and optical-component group F 3 are mounted on individual translation stages. The short green lines (a) to (c) mark the positions where raster scans of the THz beam profile using Golay cell are made (the corresponding images are shown in Fig. 3).

Fig. 2.
Fig. 2.

The signal (solid red line) and the depleted pump (dashed blue line) laser pulses. The pulse durations are 12 ns and 18 ns, respectively, and the power ratio is 1 : 5 (power determined as intensity integrated over time).

Fig. 3.
Fig. 3.

Images of the THz beam profile at various distances d away from the cylindrical PE lens (focal length 60 mm): (a) d =200 mm, (b) d =280 mm, and (c) d =360 mm.

Fig. 4.
Fig. 4.

(a) Amplitudes of the measured EO signal in a line across the THz beam spot. 1 D EO scan of the THz beam spot at focus with a step of 0.4 mm. (b) Corresponding THz intensity.

Fig. 5.
Fig. 5.

(a) Measured EO signal as a function of relative time delay between the THz and probe laser arm, including sinusoidal fit (1.50 THz); (b) power spectrum of the data in (a).

Fig. 6.
Fig. 6.

The measured time-domain signals (black curves) of EO signal attained by scanning optical-component-group F 3 together with a 1 mm pinhole over the expanded laser beam and the fitted spectra (gray curves). The scan step in both directions is 0.4 mm

Fig. 7.
Fig. 7.

Square of amplitudes (intensity) (a) and the THz wavefront (b) extracted from global fit of the measured EO-signal spectra.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I b ( t ) = I 0 ( t ) [ η + sin 2 ( Γ 0 + 2 δ 2 ) ] ,
I T ( t ) = I 0 ( t ) [ η + sin 2 ( Γ 0 + Γ ( t ) + 2 δ 2 ) ] ,
Δ I ( t ) = I T ( t ) I b ( t ) I 0 ( t ) ( Γ 0 2 + δ ) Γ ( t ) .
Γ ( t ) = β E THz ( t ) = 2 π n opt 3 r 41 L λ opt E THz ( t ) ,
I ( t ) = I p ( t ) + I s ( t ) + 2 I p ( t ) I s ( t ) cos ( Ω d t φ 2 ) ,
Δ I ( t ) 2 I p ( t ) I s ( t ) cos ( Ω d t φ 2 ) ( Γ 0 2 + δ ) Γ ( t ) .
∫Δ I ( t ) dt = Γ I p ( t ) I s ( t ) dt ,
Γ = Γ ( Γ 0 2 + δ ) cos ( Ω THz Δ d / c ) ,
Γ = β E T ,
γ = Δ I ( t ) dt I p ( t ) dt + I s ( t ) dt = I p ( t ) I s ( t ) dt I p ( t ) dt + I s ( t ) dt Γ .

Metrics