Abstract

We present an exhaustive exploration of the parameter space defining the optical properties of a bull’s eye structure, both experimentally and theoretically. By studying the resonance intensity variations associated with the different geometrical features, several parameters are seen to be interlinked and scale laws emerge. From the results it is possible to give a simple recipe to design a bull’s eye structure with optimal transmission properties.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [CrossRef]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  5. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [CrossRef]
  6. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
    [CrossRef]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  8. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
    [CrossRef] [PubMed]
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [CrossRef] [PubMed]
  10. F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
    [CrossRef]
  11. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
    [CrossRef] [PubMed]
  12. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
    [CrossRef]
  13. S. Shimada, J. Hashijume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
    [CrossRef]
  14. B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007).
    [CrossRef]
  15. N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
    [CrossRef]
  16. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
    [CrossRef]
  17. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [CrossRef] [PubMed]
  18. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [CrossRef]
  19. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [CrossRef] [PubMed]
  20. F. I. Baida, D. Van Labeke, and B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt. 42(34), 6811–6815 (2003).
    [CrossRef] [PubMed]
  21. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13(9), 3535–3542 (2005).
    [CrossRef] [PubMed]
  22. M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
    [CrossRef]
  23. T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44(4), L170–L172 (2005).
    [CrossRef]
  24. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett. 31(15), 2341–2343 (2006).
    [CrossRef] [PubMed]
  25. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15(13), 7984–7993 (2007).
    [CrossRef] [PubMed]
  26. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express 16(8), 5832–5837 (2008).
    [CrossRef] [PubMed]
  27. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
    [CrossRef]
  28. E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44(29), 6141–6154 (2005).
    [CrossRef] [PubMed]
  29. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express 16(3), 2276–2287 (2008).
    [CrossRef] [PubMed]
  30. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99(4), 043902 (2007).
    [CrossRef] [PubMed]
  31. Y. Cui and S. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17(16), 13995–14000 (2009).
    [CrossRef] [PubMed]
  32. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008).
    [CrossRef]
  33. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [CrossRef]
  34. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
    [CrossRef] [PubMed]
  35. F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
    [CrossRef]
  36. J. A. Sanchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
    [CrossRef]
  37. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
    [CrossRef] [PubMed]
  38. F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
    [CrossRef]
  39. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [CrossRef] [PubMed]

2009 (3)

2008 (9)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008).
[CrossRef]

N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express 16(3), 2276–2287 (2008).
[CrossRef] [PubMed]

N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express 16(8), 5832–5837 (2008).
[CrossRef] [PubMed]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

2007 (4)

P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15(13), 7984–7993 (2007).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99(4), 043902 (2007).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007).
[CrossRef]

2006 (3)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett. 31(15), 2341–2343 (2006).
[CrossRef] [PubMed]

2005 (7)

F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, “Optimization of plasmon excitation at structured apertures,” Appl. Opt. 44(29), 6141–6154 (2005).
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13(9), 3535–3542 (2005).
[CrossRef] [PubMed]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44(4), L170–L172 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

2004 (2)

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

2003 (7)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
[CrossRef] [PubMed]

F. I. Baida, D. Van Labeke, and B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt. 42(34), 6811–6815 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

S. Shimada, J. Hashijume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

2002 (2)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

1998 (1)

J. A. Sanchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
[CrossRef]

’t Hooft, G. W.

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99(4), 043902 (2007).
[CrossRef] [PubMed]

Agrawal, A.

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Baida, F. I.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beruete, M.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Blanchard, R.

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Bonod, N.

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Bravo-Abad, J.

Brucoli, G.

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008).
[CrossRef]

Campillo, I.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Cao, H.

Capasso, F.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

Chang, C. K.

Chang, Y. C.

Chen, L.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007).
[CrossRef]

Collins, R. T.

Cui, Y.

de León-Pérez, F.

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008).
[CrossRef]

de Léon-Pérez, F.

Degiron, A.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Diehl, L.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

Dolado, J. S.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W

F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Edamura, T.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

Falcone, F.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Fan, J.

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

Fehrembach, A.-L.

Flammer, P. D.

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44(4), L170–L172 (2005).
[CrossRef]

Furuta, S.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

García de Abajo, F. J.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F.

F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

García-Vidal, F. J

F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

García-Vidal, F. J.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Genet, C.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

Gérard, D.

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Guizal, B.

Guo, B.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007).
[CrossRef]

Hashijume, J.

S. Shimada, J. Hashijume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

He, S.

Hollingsworth, R. E.

Ishi, T.

T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44(4), L170–L172 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
[CrossRef] [PubMed]

Janssen, O. T. A.

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99(4), 043902 (2007).
[CrossRef] [PubMed]

Kan, H.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

Koyama, F.

S. Shimada, J. Hashijume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

Künnemeyer, R.

Kuttge, M.

Laluet, J.-Y.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Lee, C. K.

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Lin, D. Z.

Lin, M. W.

Linke, R. A.

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Liu, J. M.

López-Tejeira, F.

F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Martin-Moreno, L

F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L

F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Martín-Moreno, L.

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008).
[CrossRef]

F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

Nahata, A.

Nevière, M.

Ohashi, K.

T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44(4), L170–L172 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
[CrossRef] [PubMed]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Perea, E.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Pflügl, C.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

Polman, A.

Popov, E.

Przybilla, F.

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Rigneault, H.

Rodriguez-Seco, J. E.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Rubanov, S.

Sanchez-Gil, J. A.

J. A. Sanchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
[CrossRef]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Schick, I. C.

Sedoglavich, N.

Sharpe, J. C.

Shimada, S.

S. Shimada, J. Hashijume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Song, G.

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007).
[CrossRef]

Sorolla, M.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef]

Urbach, H. P.

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99(4), 043902 (2007).
[CrossRef] [PubMed]

Van Labeke, D.

Wang, Q. J.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Wenger, J.

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Yamanishi, M.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

Yeh, C. S.

Yeh, J. T.

Yu, N.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Appl. Phys. Lett. (6)

J. A. Sanchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
[CrossRef]

F. J. Garcia-Vidal, L Martin-Moreno, H. J. Lezec, and T. W Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

S. Shimada, J. Hashijume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

B. Guo, G. Song, and L. Chen, “Plasmonic very-small-aperture lasers,” Appl. Phys. Lett. 91(2), 021103 (2007).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93(18), 181101 (2008).
[CrossRef]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94(15), 151101 (2009).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very Low-Profile “Bull’s Eye” Feeder Antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Ishi, J. Fujikata, and K. Ohashi, “Large Optical Transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating,” Jpn. J. Appl. Phys. 44(4), L170–L172 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si Nano-Photodiode with a Surface Plasmon Antenna,” Jpn. J. Appl. Phys. 44(12), L364–L366 (2005).
[CrossRef]

N. J. Phys. (1)

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” N. J. Phys. 10(10), 105017 (2008).
[CrossRef]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13(3), 429–432 (2002).
[CrossRef]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[CrossRef]

Opt. Express (8)

N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express 16(3), 2276–2287 (2008).
[CrossRef] [PubMed]

N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express 16(8), 5832–5837 (2008).
[CrossRef] [PubMed]

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[CrossRef] [PubMed]

M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
[CrossRef] [PubMed]

Y. Cui and S. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17(16), 13995–14000 (2009).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13(9), 3535–3542 (2005).
[CrossRef] [PubMed]

P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15(13), 7984–7993 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. B (1)

F. López-Tejeira, F. García-Vidal, L. Martín-Moreno, F. J García-Vidal, and L Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99(4), 043902 (2007).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) SEM image of a bull’s eye structure. (b) Schematic representation of the structure under study. It consists of a metal film of thickness t deposited on a glass substrate. The film is structured by n circular grooves of width w, depth s, separated by a period p. A single hole of diameter d is milled through the film at a distance a from the center of the first groove.

Fig. 2
Fig. 2

Effect of the hole diameter on the transmission of a bull’s eye (n = 7, s = 90nm, w = 220nm, t = 280nm). (a) Relative transmission intensities versus the ratio of hole diameter d and groove periodicity p for the three series periods (the transmissions have been normalized to the hole area). (b) Theoretical simulations for same systems as in (a). (c) Relative transmission spectra of a bull’s eye at three different periods (p = 580nm, 660nm, 760nm) d = p/2.

Fig. 3
Fig. 3

Relative transmission intensities as a function of the number of grooves for three different periods (p = 500nm, 600nm, 700nm with d = 250nm, s = 90nm, w = 220nm, t = 280nm).

Fig. 4
Fig. 4

Relative transmission intensities as a function of the ratio w/p for a series of three periods (p = 500nm, 600nm and 700nm with s = 90nm, d = 250nm, n = 8).

Fig. 5
Fig. 5

(a) Effect of shape ratio of the groove s/w on the transmission (a = 600nm, d = 230nm, p = 600nm, n = 7, t = 280nm). (b) Theoretical simulations for the same system than (a).

Fig. 6
Fig. 6

Effect of the number of corrugations for different values of s and w. (a) Relative transmission intensities as a function of the number of grooves for a series of three groove depths (s = 40nm, 80nm, 120nm with p = 600 nm, w = 220nm). (b) Relative transmission intensities as a function of the number of grooves for a series of three groove widths (w = 125nm, 220nm, 350nm with p = 600 nm, s = 80nm).

Fig. 7
Fig. 7

Effect of distance a on the transmission (p = 600nm, w = 220nm, s = 80nmn, n = 6). (a) Experimental data: the distance a is varied. (b) Theoretical simulations for the same system than (a).

Metrics