Abstract

A 1.31/1.55 μm multimode interference based wavelength demultiplexer aided by computer-generated planar holograms is proposed. The device length is not limited to the common multiples of the beat lengths for the two wavelengths. The demultiplexer length is chosen as the first self-imaging length for 1.55 μm input, and a computer-generated holographic pattern is used to image the 1.31 μm input to the cross output port. The design and optimization of the holographic pattern is presented. The device performance is investigated using the beam propagation method.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Keiser, Optical Fiber Communications (McGraw-Hill, MA, 2000).
  2. H. Kawata, T. Ogawa, N. Yoshimoto, and T. Sugie, “Multichannel video and IP signal multiplexing system using CWDM technology,” J. Lightwave Technol. 22(6), 1454–1462 (2004).
    [CrossRef]
  3. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  4. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
    [CrossRef]
  5. K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 [micro sign]m wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
    [CrossRef]
  6. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
    [CrossRef]
  7. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995).
    [CrossRef]
  8. T. W. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26(7), 414–416 (2001).
    [CrossRef]
  9. Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, “New optical waveguide design based on wavefront matching method,” J. Lightwave Technol. 25(11), 3511–3518 (2007).
    [CrossRef]
  10. Y. Tsuji and K. Hirayama, “Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution,” IEEE Photon. Technol. Lett. 20(12), 982–984 (2008).
    [CrossRef]
  11. S.-Y. Tseng, Y. Kim, C. J. K. Richardson, and J. Goldhar, “Implementation of discrete unitary transformations by multimode waveguide holograms,” Appl. Opt. 45(20), 4864–4872 (2006).
    [CrossRef] [PubMed]
  12. S.-Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen, “Variable splitting ratio 2 x 2 MMI couplers using multimode waveguide holograms,” Opt. Express 15(14), 9015–9021 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9015 .
    [CrossRef] [PubMed]
  13. S.-Y. Tseng, S. K. Choi, and B. Kippelen, “Variable-ratio power splitters using computer-generated planar holograms on multimode interference couplers,” Opt. Lett. 34(4), 512–514 (2009).
    [CrossRef] [PubMed]
  14. S.-Y. Tseng, “Diffraction engineering of multimode waveguides using computer-generated planar holograms,” Opt. Express 17(24), 21465–21471 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21465 .
    [CrossRef] [PubMed]
  15. S.-Y. Tseng, and M.-C. Wu, “Adiabatic mode conversion in multimode waveguides using computer-generated planar holograms,” submitted (2010).
  16. The Dow Chemical Company, “CYCLOTENE Advanced Electronics Resins,” www.dow.com/cyclotene
  17. R. W. Boyd, Nonlinear Optics (Academic, CA, 1992).

2009 (2)

2008 (1)

Y. Tsuji and K. Hirayama, “Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution,” IEEE Photon. Technol. Lett. 20(12), 982–984 (2008).
[CrossRef]

2007 (2)

2006 (1)

2004 (1)

2001 (1)

1999 (1)

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

1996 (1)

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 [micro sign]m wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[CrossRef]

1995 (2)

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995).
[CrossRef]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1994 (1)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Bachmann, M.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Besse, P. A.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Broughton, J. N.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995).
[CrossRef]

Choi, S. K.

Fuentes-Hernandez, C.

Goldhar, J.

Hashimoto, T.

Hirayama, K.

Y. Tsuji and K. Hirayama, “Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution,” IEEE Photon. Technol. Lett. 20(12), 982–984 (2008).
[CrossRef]

Janz, C. F.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995).
[CrossRef]

Jiang, Z.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

Kawata, H.

Kim, Y.

Kippelen, B.

Lee, W.-Y.

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 [micro sign]m wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[CrossRef]

Li, B.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

Li, G.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

Lin, K.-C.

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 [micro sign]m wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[CrossRef]

Liu, E.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

MacDonald, R. I.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995).
[CrossRef]

Melchior, H.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Mossberg, T. W.

Ogawa, T.

Owens, D.

Paiam, M. R.

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Qin, J.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

Richardson, C. J. K.

Saida, T.

Sakamaki, Y.

Smit, M. K.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Sugie, T.

Takahashi, H.

Tseng, S.-Y.

Tsuji, Y.

Y. Tsuji and K. Hirayama, “Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution,” IEEE Photon. Technol. Lett. 20(12), 982–984 (2008).
[CrossRef]

Wang, X.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

Yoshimoto, N.

Appl. Opt. (1)

Electron. Lett. (1)

K.-C. Lin and W.-Y. Lee, “Guided-wave 1.3/1.55 [micro sign]m wavelength division multiplexer based on multimode interference,” Electron. Lett. 32(14), 1259–1261 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11(5), 575–577 (1999).
[CrossRef]

M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7(10), 1180–1182 (1995).
[CrossRef]

Y. Tsuji and K. Hirayama, “Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution,” IEEE Photon. Technol. Lett. 20(12), 982–984 (2008).
[CrossRef]

J. Lightwave Technol. (4)

Y. Sakamaki, T. Saida, T. Hashimoto, and H. Takahashi, “New optical waveguide design based on wavefront matching method,” J. Lightwave Technol. 25(11), 3511–3518 (2007).
[CrossRef]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

H. Kawata, T. Ogawa, N. Yoshimoto, and T. Sugie, “Multichannel video and IP signal multiplexing system using CWDM technology,” J. Lightwave Technol. 22(6), 1454–1462 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (4)

G. Keiser, Optical Fiber Communications (McGraw-Hill, MA, 2000).

S.-Y. Tseng, and M.-C. Wu, “Adiabatic mode conversion in multimode waveguides using computer-generated planar holograms,” submitted (2010).

The Dow Chemical Company, “CYCLOTENE Advanced Electronics Resins,” www.dow.com/cyclotene

R. W. Boyd, Nonlinear Optics (Academic, CA, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Operation schematic of the MMI wavelength demultiplexer aided by CGPH.

Fig. 2
Fig. 2

BPM simulations of the MMI without the CGPH. (a)1.55 μm input; (b) 1.31 μm input.

Fig. 3
Fig. 3

BPM simulations showing that the phase conjugate of the mirrored image of E1 (L) images to the cross port at 1.31 μm.

Fig. 4
Fig. 4

The calculated CGPH as described by Eq. (4). The interference pattern is normalized to a maximum index perturbation Δn and used as a perturbation to the multimode waveguide.

Fig. 5
Fig. 5

The variation of bar/cross ports output at 1.31 µm as a function of maximum index perturbation Δn.

Fig. 6
Fig. 6

BPM simulations of the MMI demultiplexer with CGPH. (a) 1.31 μm input; (b) 1.55 μm input.

Fig. 7
Fig. 7

Wavelength dependence of the cross and bar ports contrast defined by −10log (Pcross / Pbar) with and without the CGPH.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L π , λ 4 n e W e 2 3 λ ,
2 E 1 , 2 + ω 2 μ ε E 1 , 2 = 0 ,
E 1 , 2 = c ( 1 , 2 ) , n ϕ n exp ( j β n z )    ( n = 1 , 2 , N ) ,
| E 1 ( z ) + E 2 ( z ) | 2 | E 1 ( z ) | 2 | E 2 ( z ) | 2 ,
Δ n { m n c ( 1 ) , m c ( 2 ) , n ϕ m ϕ n exp [ j ( β m β n ) z ] + c .c . } ,
d E 1 / d z = i κ E 2 d E 2 / d z = i κ E 1 ,
η = | E 2 ( L ) | 2 / | E 1 ( 0 ) | 2 = sin 2 ( κ L ) .

Metrics