Abstract

In this work a narrow linewidth (1 kHz) laser source is used to measure the free spectral range of a fiberized Fabry-Perot etalon with sub-Hz accuracy (10−8). A previously demonstrated technique based on the Pound-Drever-Hall error signal is improved in accuracy by the use of a narrow linewidth laser swept in frequency via an acousto-optic modulator, or single sideband generation. The sub-Hz (10−8) accuracy attained enables the characterization of both the long-term drift and the polarization dependence of the free spectral range of the fiberized etalon.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  2. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
    [CrossRef]
  3. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
    [CrossRef] [PubMed]
  4. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
    [CrossRef] [PubMed]
  5. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
    [CrossRef]
  6. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, and P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
    [CrossRef] [PubMed]
  7. Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
    [CrossRef]
  8. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24(21), 1499–1501 (1999).
    [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]
  10. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [CrossRef]
  11. C. R. Locke, D. Stuart, E. N. Ivanov, and A. N. Luiten, “A simple technique for accurate and complete characterisation of a Fabry-Perot cavity,” Opt. Express 17(24), 21935–21943 (2009).
    [CrossRef] [PubMed]
  12. Y. Yeh, D. Park, and S. H. Park, “High-speed measurement of free spectral range voltage of tunable filters,” Opt. Lett. 34(1), 52–54 (2009).
    [CrossRef]
  13. S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
    [CrossRef]
  14. M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” Lightwave Technology,” Journalism 16(5), 859–863 (1998).

2010

2009

Y. Yeh, D. Park, and S. H. Park, “High-speed measurement of free spectral range voltage of tunable filters,” Opt. Lett. 34(1), 52–54 (2009).
[CrossRef]

C. R. Locke, D. Stuart, E. N. Ivanov, and A. N. Luiten, “A simple technique for accurate and complete characterisation of a Fabry-Perot cavity,” Opt. Express 17(24), 21935–21943 (2009).
[CrossRef] [PubMed]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

2008

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[CrossRef] [PubMed]

2006

S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[CrossRef]

2003

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2001

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[CrossRef]

1999

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[CrossRef]

D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24(21), 1499–1501 (1999).
[CrossRef]

1998

M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” Lightwave Technology,” Journalism 16(5), 859–863 (1998).

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Akbulut, M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Bergquist, J. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[CrossRef]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[CrossRef]

Chen, J.

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[CrossRef]

Delfyett, P. J.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, and P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
[CrossRef] [PubMed]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Esman, R. D.

M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” Lightwave Technology,” Journalism 16(5), 859–863 (1998).

Fendel, P.

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” Lightwave Technology,” Journalism 16(5), 859–863 (1998).

Fukuda, M.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Gee, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[CrossRef]

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Gray, M. B.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hänsch, T. W.

Hoghooghi, N.

Holzwarth, R.

Honda, Y.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Ippen, E. P.

Itano, W. M.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[CrossRef]

Ivanov, E. N.

Kärtner, F. X.

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Locke, C. R.

Luiten, A. N.

Mandridis, D.

McClelland, D. E.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Omori, T.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Ozdur, I.

Ozharar, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[CrossRef]

Park, D.

Park, S. H.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Piracha, M. U.

Quinlan, F.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[CrossRef]

Sakai, H.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Sakaue, K.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Sasao, N.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Shaddock, D. A.

Shimizu, H.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Sickler, J. W.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Stuart, D.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Urakawa, J.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Wilken, T.

Yeh, Y.

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[CrossRef]

Am. J. Phys.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[CrossRef]

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Electron. Lett.

S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, “High-precision measurement of free spectral range of etalon,” Electron. Lett. 42(12), 715–716 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A, Pure Appl. Opt. 11(10), 103001 (2009).
[CrossRef]

Journalism

M. Y. Frankel and R. D. Esman, “Optical single-sideband suppressed-carrier modulator for wide-band signal processing,” Lightwave Technology,” Journalism 16(5), 859–863 (1998).

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).,” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Opt. Commun.

Y. Honda, H. Shimizu, M. Fukuda, T. Omori, J. Urakawa, K. Sakaue, H. Sakai, and N. Sasao, “Stabilization of a non-planar optical cavity using its polarization property,” Opt. Commun. 282(15), 3108–3112 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation of the Pound-Drever-Hall error signal for an etalon having FSR = 100 MHz and �� = 100. (a) Power and phase response of the transmitted beam as a function of the optical frequency. (b) Error signal voltage generated using phase modulation frequencies in the proximity of the etalon FSR. The simulation includes the effect of electrical noise with amplitude of 0.05 V. (c) Simulation of the peak-to-peak voltage of the error signal as the phase modulation frequency is varied for values close to the etalon FSR, with noise amplitude = 0.01 V. The red dot denotes the resolution limit of the simulation.

Fig. 2
Fig. 2

(a) Linewidth measurement of the laser source in use. The linewidth of the laser is measured using a heterodyne beat between a pair of similar laser sources to a deconvolved 1 kHz for 1 s. (b) Spectrogram of the frequency swept electrical drive of the acousto-optic modulator. Note the sufficient linearity of the driving signal for the generated 10 MHz sweep.

Fig. 3
Fig. 3

(a) Experimental setup schematic. A narrow linewidth laser is frequency swept externally using an acousto-optic modulator driven by the appropriate frequency swept electrical signal. The swept laser source is used in a modified Pound-Drever-Hall setup to measure the free spectral range. VDC, voltage source; PC, polarization controller; AOM, acousto-optic modulator; BPF, band-pass filter; Amp, voltage amplifier; RF, radiofrequency synthesizer; PM, phase modulator; PS, phase shifter; Circ, circulator; PD, photodetector; LPF, low-pass filter. (b) Experimental results for the etalon free spectral range measurement. The peak-to-peak voltage of the error signal is recorded as a function of the phase modulation frequency. The FSR for the fiberized etalon is measured with sub-Hz accuracy 10-8.

Fig. 4
Fig. 4

(a) Polarization dependence of the free spectral range (FSR) of the etalon. Note that two resonance peaks appear on the black curve when the polarization input to the etalon is not adjusted, while a single peak of higher amplitude remains on the blue curve as the polarization input to the etalon is aligned to one of the polarization eigenstates of the etalon. (b) Variance of the FSR of the fiberized etalon as a function of time. Note that the FSR varies ~400 Hz in a 9 hour span.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V ( v , φ ) C Re { R ( v ) R * ( v + f P M ) R ( v ) * R ( v f P M ) e i φ } ,   with   R ( v ) = r ( e i 2 π v / F S R 1 ) 1 r 2 e i 2 π v / F S R ,

Metrics