Abstract

At higher frequencies (visible and infrared) both the dimensions and the individual metal properties play an important role in determining the resonant response of arrays of SRRs. As a result, a substantial difference between the responses of gold- and Al-based SRR arrays has been observed. Additionally, deposition of gold SRRs onto a substrate typically involves the use of an additional adhesion layer. Titanium (Ti) is the most common adhesive thin-film material used to attach gold onto dielectric/semiconductor substrates. In this paper we investigate the impact of the Ti adhesion layer on the overall response of Au-based nano-scale SRRs. The results quantify the extent to which the overall difference in the resonance frequencies between Au- and Al-based SRRs is due to the presence of the Ti. We show that even a 2-nm-thick Ti layer can red-shift the position of SRR resonance by 20 nm. Finally, we demonstrate that by intentional addition of titanium in the Au-based SRRs, their overall resonant response can be tuned widely in frequency, but at the expense of resonance magnitude.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [CrossRef] [PubMed]
  2. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
    [CrossRef]
  3. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express 18(3), 3210–3218 (2010).
    [CrossRef] [PubMed]
  4. B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
    [CrossRef]
  5. F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
    [CrossRef]
  6. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [CrossRef] [PubMed]
  7. B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
    [CrossRef]
  8. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [CrossRef] [PubMed]
  9. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
    [CrossRef]
  10. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  11. E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
    [CrossRef]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  13. V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
    [CrossRef]
  14. A. David Olver, Microwave and Optical Transmission (John Wiley & Sons Ltd, 1992) Chap. 8.

2010 (1)

2009 (4)

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

2007 (3)

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

2005 (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

1983 (1)

Aassime, A.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Alexander, R. W.

Asakawa, K.

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Belier, B.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Biswas, R.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Bratkovsky, A. M.

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

De La Rue, R. M.

de Lustrac, A

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

de Lustrac, A.

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

El-Kady, I.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Gadot, F.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Ho, K. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Johnson, N. P.

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Kante, B.

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

Khokhar, A. Z.

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Kumar, V. D.

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

Lahiri, B.

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Long, L. L.

Lourtioz, J. M.

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

Lourtioz, J.-M

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Lourtioz, J.-M.

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Lustrac, A.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Mangeney, J.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

McMeekin, S. G.

Ordal, M. A.

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Ponizovskaya, E. V.

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Soukoulis, C. M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Tretyakov, S.

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

Ward, C. A.

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A Mater. Sci. Process. (1)

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

Metamaterials (Amst.) (1)

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Quantum Electron. (1)

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Photonics Nanostruct. Fundam. Appl (1)

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

Phys. Rev. B (3)

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Other (1)

A. David Olver, Microwave and Optical Transmission (John Wiley & Sons Ltd, 1992) Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM micrographs of fabricated SRRs and their corresponding experimental reflectance spectra for TE/TM polarization: (a) 50-nm-thick Al SRRs without Ti adhesion layer; (b) 48-nm-thick Au SRRs with 2 nm of Ti layer.

Fig. 2
Fig. 2

Reflection spectra of dual-layer SRRs with increased Ti quantity, where the overall Au/Ti thickness is kept constant: (a) experimental spectra at two different polarizations; (b) calculated spectra for the extended wavelength range.

Fig. 3
Fig. 3

Reflection spectra of dual-layer SRRs with increased Ti fraction and total system thickness, while the Au thickness is kept constant: (a) experimental spectra at two different polarizations; (b) calculated spectra for the extended wavelength range.

Fig. 4
Fig. 4

Calculated Ti-induced change in resonance position and amplitude for dual-layer SRR as a function of Ti content. The overall thickness of Au/Ti SRR is kept constant: results for (a) TE and (b) TM polarization.

Fig. 5
Fig. 5

Skin depth effect observed in calculated electric field profiles (log scale) for nano-sized SRR at the plasmonic resonance condition: (a) pure Au layer; (b) layer with 4% of Ti content; (c) layer with 40% of Ti content; (d) layer with 70% of Ti content.

Fig. 6
Fig. 6

Comparison between the experimental reflectance spectra of 50-nm-thick Al with that of 2 nm Ti + 48 nm Al SRRs: (a) results for TE polarization; (b) results for TM polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω τ = ω ε 2 1 ε 1      
ω p 2 = ( 1 ε 1 ) ( ω 2 + ω τ 2 )

Metrics