Abstract

At higher frequencies (visible and infrared) both the dimensions and the individual metal properties play an important role in determining the resonant response of arrays of SRRs. As a result, a substantial difference between the responses of gold- and Al-based SRR arrays has been observed. Additionally, deposition of gold SRRs onto a substrate typically involves the use of an additional adhesion layer. Titanium (Ti) is the most common adhesive thin-film material used to attach gold onto dielectric/semiconductor substrates. In this paper we investigate the impact of the Ti adhesion layer on the overall response of Au-based nano-scale SRRs. The results quantify the extent to which the overall difference in the resonance frequencies between Au- and Al-based SRRs is due to the presence of the Ti. We show that even a 2-nm-thick Ti layer can red-shift the position of SRR resonance by 20 nm. Finally, we demonstrate that by intentional addition of titanium in the Au-based SRRs, their overall resonant response can be tuned widely in frequency, but at the expense of resonance magnitude.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [CrossRef] [PubMed]
  2. S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
    [CrossRef]
  3. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Magnetic response of split ring resonators (SRRs) at visible frequencies,” Opt. Express 18(3), 3210–3218 (2010).
    [CrossRef] [PubMed]
  4. B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
    [CrossRef]
  5. F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
    [CrossRef]
  6. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [CrossRef] [PubMed]
  7. B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
    [CrossRef]
  8. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [CrossRef] [PubMed]
  9. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
    [CrossRef]
  10. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  11. E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
    [CrossRef]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  13. V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
    [CrossRef]
  14. A. David Olver, Microwave and Optical Transmission (John Wiley & Sons Ltd, 1992) Chap. 8.

2010 (1)

2009 (4)

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

2007 (3)

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

2005 (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

1983 (1)

Aassime, A.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Alexander, R. W.

Asakawa, K.

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Belier, B.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Biswas, R.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Bratkovsky, A. M.

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

De La Rue, R. M.

de Lustrac, A

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

de Lustrac, A.

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

El-Kady, I.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Gadot, F.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Ho, K. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Johnson, N. P.

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Kante, B.

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

Khokhar, A. Z.

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Kumar, V. D.

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

Lahiri, B.

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Long, L. L.

Lourtioz, J. M.

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

Lourtioz, J.-M

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Lourtioz, J.-M.

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Lustrac, A.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Mangeney, J.

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

McMeekin, S. G.

Ordal, M. A.

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Ponizovskaya, E. V.

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Soukoulis, C. M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

Tretyakov, S.

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

Ward, C. A.

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A Mater. Sci. Process. (1)

E. V. Ponizovskaya and A. M. Bratkovsky, “Metallic negative index nanostructures at optical frequencies: losses and effect of gain medium,” Appl. Phys. A Mater. Sci. Process. 87(2), 161–165 (2007).
[CrossRef]

Metamaterials (Amst.) (1)

S. Tretyakov, “On geometrical scaling of split-ring and double-bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Quantum Electron. (1)

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. Lustrac, J.-M. Lourtioz, A de Lustrac, and J.-M Lourtioz, “Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon,” Opt. Quantum Electron. 39(4-6), 273–284 (2007).
[CrossRef]

Photonics Nanostruct. Fundam. Appl (1)

V. D. Kumar and K. Asakawa, “Investigation of a slot nanoantenna in optical frequency range,” Photonics Nanostruct. Fundam. Appl 7(3), 161–168 (2009).
[CrossRef]

Phys. Rev. B (3)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299 (2000).
[CrossRef]

B. Kante, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

B. Kante, J.-M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Other (1)

A. David Olver, Microwave and Optical Transmission (John Wiley & Sons Ltd, 1992) Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM micrographs of fabricated SRRs and their corresponding experimental reflectance spectra for TE/TM polarization: (a) 50-nm-thick Al SRRs without Ti adhesion layer; (b) 48-nm-thick Au SRRs with 2 nm of Ti layer.

Fig. 2
Fig. 2

Reflection spectra of dual-layer SRRs with increased Ti quantity, where the overall Au/Ti thickness is kept constant: (a) experimental spectra at two different polarizations; (b) calculated spectra for the extended wavelength range.

Fig. 3
Fig. 3

Reflection spectra of dual-layer SRRs with increased Ti fraction and total system thickness, while the Au thickness is kept constant: (a) experimental spectra at two different polarizations; (b) calculated spectra for the extended wavelength range.

Fig. 4
Fig. 4

Calculated Ti-induced change in resonance position and amplitude for dual-layer SRR as a function of Ti content. The overall thickness of Au/Ti SRR is kept constant: results for (a) TE and (b) TM polarization.

Fig. 5
Fig. 5

Skin depth effect observed in calculated electric field profiles (log scale) for nano-sized SRR at the plasmonic resonance condition: (a) pure Au layer; (b) layer with 4% of Ti content; (c) layer with 40% of Ti content; (d) layer with 70% of Ti content.

Fig. 6
Fig. 6

Comparison between the experimental reflectance spectra of 50-nm-thick Al with that of 2 nm Ti + 48 nm Al SRRs: (a) results for TE polarization; (b) results for TM polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω τ = ω ε 2 1 ε 1      
ω p 2 = ( 1 ε 1 ) ( ω 2 + ω τ 2 )

Metrics