Abstract

Using automated laser pulse temporal shaping we report on enhancing spectral emission characteristics of ablation plasmas produced by laser irradiation of brass on ultrafast time scales. For different input irradiance levels, control of both atomic and ionic species becomes possible concerning the yield and the excitation state. The improved energy coupling determined by tailored pulses induces material ejection with lower mechanical load that translates into hot gas-phase regions with higher excitation degrees and reduced particulates.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Morphological changes in ultrafast laser ablation plumes with varying spot size

S. S. Harilal, P. K. Diwakar, M. P. Polek, and M. C. Phillips
Opt. Express 23(12) 15608-15615 (2015)

Stoichiometric investigations of laser-ablated brass plasma

D. N. Patel, P. K. Pandey, and R. K. Thareja
Appl. Opt. 51(7) B192-B200 (2012)

Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips
Opt. Express 24(16) 17941-17949 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Giakoumaki, K. Melessanaki, and D. Anglos,“Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
    [Crossref]
  2. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
    [Crossref]
  3. E. L. Gurevich and R. Hergenröder, “Femtosecond Laser-Induced Breakdown Spectroscopy: Physics, Applications, and Perspectives,” Appl. Spect. 61233A–242A (2007).
    [Crossref]
  4. F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
    [Crossref]
  5. H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
    [Crossref]
  6. J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
    [Crossref]
  7. C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
    [Crossref]
  8. F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).
  9. R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
    [Crossref]
  10. D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
    [Crossref]
  11. N. M. Bulgakova, I. M. Bourakov, and N. A. Bulgakova, “Rarefaction shock wave: Formation under short pulse laser ablation of solids,” Phys. Rev. E,  63, 046311/1–5 (2001).
    [Crossref]
  12. J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
    [Crossref]
  13. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108/1–22 (2006).
    [Crossref]
  14. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin. Sol. Films 453–454, 501–505 (2004).
    [Crossref]
  15. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
    [Crossref]
  16. S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520/1–10 (2008).
    [Crossref]
  17. T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
    [Crossref]
  18. A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16, 11300–11309 (2008).
    [Crossref] [PubMed]
  19. A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
    [Crossref]
  20. M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
    [Crossref]
  21. R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
    [Crossref]
  22. M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
    [Crossref]
  23. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
    [Crossref] [PubMed]
  24. A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
    [Crossref]
  25. O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
    [Crossref]
  26. R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrom. Rev. 25, 551–572 (2006).
    [Crossref] [PubMed]
  27. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
    [Crossref]
  28. M. Guillermin, “Study of the femtosecond laser ablation plume, control and optimization of processes,” PhD Thesis, Université Jean Monnet, Saint Etienne (2009) (http://tel.archives-ouvertes.fr/tel-00395196/en/).
  29. C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
    [Crossref]
  30. D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
    [Crossref]
  31. V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta Part B 63, 1006–1010 (2008).
    [Crossref]
  32. S. Noël, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255, 9738–9741 (2009).
    [Crossref]
  33. X. Wang, S. Amoruso, and J. Xia, “Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation,” Appl. Surf. Sci. 255, 5211–5214 (2009).
    [Crossref]
  34. Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
    [Crossref]
  35. J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
    [Crossref]
  36. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of state for matter under conditions of high energy density,” Sov. Tech. Rev. B: Therm. Phys. Rev. 5, 1 (1993).
  37. R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
    [Crossref]
  38. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133/1–17 (2008).
    [Crossref]
  39. B. Chimier and V. T. Tikhonchuk, “Liquid-vapor phase transition and droplet formation by subpicosecond laser heating,” Phys. Rev. B 79, 184107/1–10 (2009).
    [Crossref]

2009 (7)

R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
[Crossref]

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

S. Noël, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255, 9738–9741 (2009).
[Crossref]

X. Wang, S. Amoruso, and J. Xia, “Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation,” Appl. Surf. Sci. 255, 5211–5214 (2009).
[Crossref]

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

B. Chimier and V. T. Tikhonchuk, “Liquid-vapor phase transition and droplet formation by subpicosecond laser heating,” Phys. Rev. B 79, 184107/1–10 (2009).
[Crossref]

2008 (6)

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133/1–17 (2008).
[Crossref]

V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta Part B 63, 1006–1010 (2008).
[Crossref]

C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
[Crossref]

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520/1–10 (2008).
[Crossref]

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16, 11300–11309 (2008).
[Crossref] [PubMed]

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

2007 (5)

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

A. Giakoumaki, K. Melessanaki, and D. Anglos,“Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[Crossref]

E. L. Gurevich and R. Hergenröder, “Femtosecond Laser-Induced Breakdown Spectroscopy: Physics, Applications, and Perspectives,” Appl. Spect. 61233A–242A (2007).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

2006 (5)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrom. Rev. 25, 551–572 (2006).
[Crossref] [PubMed]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108/1–22 (2006).
[Crossref]

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

2005 (3)

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
[Crossref]

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

2004 (2)

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin. Sol. Films 453–454, 501–505 (2004).
[Crossref]

2003 (2)

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

2002 (1)

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

2001 (1)

N. M. Bulgakova, I. M. Bourakov, and N. A. Bulgakova, “Rarefaction shock wave: Formation under short pulse laser ablation of solids,” Phys. Rev. E,  63, 046311/1–5 (2001).
[Crossref]

2000 (3)

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

1999 (1)

O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
[Crossref]

1998 (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

1993 (1)

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of state for matter under conditions of high energy density,” Sov. Tech. Rev. B: Therm. Phys. Rev. 5, 1 (1993).

Albano, G.

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Albert, O.

D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
[Crossref]

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Amoruso, S.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

X. Wang, S. Amoruso, and J. Xia, “Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation,” Appl. Surf. Sci. 255, 5211–5214 (2009).
[Crossref]

Anglos, D.

V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta Part B 63, 1006–1010 (2008).
[Crossref]

A. Giakoumaki, K. Melessanaki, and D. Anglos,“Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[Crossref]

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Ashkenasi, D.

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

Assion, A.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Audouard, E.

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

Axente, E.

S. Noël, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255, 9738–9741 (2009).
[Crossref]

Azarm, A.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Bartelt, A.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

Baumert, T.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Benchikh, N.

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Bohlen, A. von

C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
[Crossref]

Bolshov, M.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

Bonis, A. De

R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Borisov, O. V.

O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
[Crossref]

Boulmer-Leborgne, C.

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Bourakov, I. M.

N. M. Bulgakova, I. M. Bourakov, and N. A. Bulgakova, “Rarefaction shock wave: Formation under short pulse laser ablation of solids,” Phys. Rev. E,  63, 046311/1–5 (2001).
[Crossref]

Boutou, V.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Bruzzese, R.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

Bulgakova, N. A.

N. M. Bulgakova, I. M. Bourakov, and N. A. Bulgakova, “Rarefaction shock wave: Formation under short pulse laser ablation of solids,” Phys. Rev. E,  63, 046311/1–5 (2001).
[Crossref]

Bulgakova, N. M.

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

N. M. Bulgakova, I. M. Bourakov, and N. A. Bulgakova, “Rarefaction shock wave: Formation under short pulse laser ablation of solids,” Phys. Rev. E,  63, 046311/1–5 (2001).
[Crossref]

Bushman, A. V.

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of state for matter under conditions of high energy density,” Sov. Tech. Rev. B: Therm. Phys. Rev. 5, 1 (1993).

Caetano, M.

O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
[Crossref]

Campbell, E. E. B.

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

Celli, V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133/1–17 (2008).
[Crossref]

Chimier, B.

B. Chimier and V. T. Tikhonchuk, “Liquid-vapor phase transition and droplet formation by subpicosecond laser heating,” Phys. Rev. B 79, 184107/1–10 (2009).
[Crossref]

Chin, S. L.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Colombier, J. P.

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

Combis, P.

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

Courvoisier, F.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

Craciun, V.

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Daigle, J.-F.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Dantus, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Dell’Aglio, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

Donnelly, T.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

Donnet, C.

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Dutouquet, C.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin. Sol. Films 453–454, 501–505 (2004).
[Crossref]

Etchepare, J.

D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
[Crossref]

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Fernandez, A.

O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
[Crossref]

Fillit, R. Y.

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Fortov, V. E.

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of state for matter under conditions of high energy density,” Sov. Tech. Rev. B: Therm. Phys. Rev. 5, 1 (1993).

Fotakis, C.

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16, 11300–11309 (2008).
[Crossref] [PubMed]

V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta Part B 63, 1006–1010 (2008).
[Crossref]

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

Galasso, A.

R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Garcia, C. C.

C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
[Crossref]

Garrelie, F.

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Gaudiuso, R.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Ghica, C.

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Giacomo, A. De

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

Giakoumaki, A.

A. Giakoumaki, K. Melessanaki, and D. Anglos,“Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[Crossref]

Gordon, R. J.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520/1–10 (2008).
[Crossref]

Gray, D.

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16, 11300–11309 (2008).
[Crossref] [PubMed]

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Gross, A.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Guillermin, M.

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

M. Guillermin, “Study of the femtosecond laser ablation plume, control and optimization of processes,” PhD Thesis, Université Jean Monnet, Saint Etienne (2009) (http://tel.archives-ouvertes.fr/tel-00395196/en/).

Gunaratne, T.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Gurevich, E. L.

E. L. Gurevich and R. Hergenröder, “Femtosecond Laser-Induced Breakdown Spectroscopy: Physics, Applications, and Perspectives,” Appl. Spect. 61233A–242A (2007).
[Crossref]

Haag, L.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

Hergenröder, R.

E. L. Gurevich and R. Hergenröder, “Femtosecond Laser-Induced Breakdown Spectroscopy: Physics, Applications, and Perspectives,” Appl. Spect. 61233A–242A (2007).
[Crossref]

R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrom. Rev. 25, 551–572 (2006).
[Crossref] [PubMed]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

Hermann, J.

S. Noël, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255, 9738–9741 (2009).
[Crossref]

Hertel, I. V.

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

Hommes, V.

R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrom. Rev. 25, 551–572 (2006).
[Crossref] [PubMed]

Hu, Z.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520/1–10 (2008).
[Crossref]

Kamali, Y.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Kangas, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Kasparian, J.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Kelly, R.

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Klini, A.

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16, 11300–11309 (2008).
[Crossref] [PubMed]

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Koudoumas, E.

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

Kutschera, U.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

Laval, J. Y.

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108/1–22 (2006).
[Crossref]

Liebig, C.

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

Lin, Z.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133/1–17 (2008).
[Crossref]

Linde, D. von der

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

Lindner, H.

C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
[Crossref]

Liu, W.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Loir, A.-S.

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

Lomonosov, I. V.

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of state for matter under conditions of high energy density,” Sov. Tech. Rev. B: Therm. Phys. Rev. 5, 1 (1993).

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108/1–22 (2006).
[Crossref]

Loukakos, P. A.

Loulergue, J. C.

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Lunney, J. G.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

Manousaki, A.

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses,” Opt. Express 16, 11300–11309 (2008).
[Crossref] [PubMed]

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Mao, X. L.

O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
[Crossref]

Margetic, V.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

Mathieu, P.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Mayorov, F.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

Méjean, G.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Melessanaki, K.

A. Giakoumaki, K. Melessanaki, and D. Anglos,“Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[Crossref]

Mermillod-Blondin, A.

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108/1–22 (2006).
[Crossref]

Mihailescu, I. N.

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Millon, E.

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Moreau, D.

D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
[Crossref]

Ni, X.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

Nicolas, G.

V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta Part B 63, 1006–1010 (2008).
[Crossref]

Niemax, K.

C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
[Crossref]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

Noël, S.

S. Noël, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255, 9738–9741 (2009).
[Crossref]

Pailleret, V.

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Pakulev, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

Parisi, G. P.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Pascale, O. De

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

Perriere, J.

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Piñon, V.

V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta Part B 63, 1006–1010 (2008).
[Crossref]

Pronko, P. P.

D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
[Crossref]

Rabitz, H.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

Ristoscu, C.

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Rohwetter, Ph.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Rosenfeld, A.

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

Roth, M.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

Rouzaud, J. N.

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Roy, G.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Russo, R. E.

O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
[Crossref]

Salmon, E.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Samek, O.

R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrom. Rev. 25, 551–572 (2006).
[Crossref] [PubMed]

Santagata, A.

R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Sarpe-Tudoran, C.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

Scuderi, D.

D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
[Crossref]

Seiler, W.

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Semerok, A.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin. Sol. Films 453–454, 501–505 (2004).
[Crossref]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Simard, J.-R.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Simard, P. T.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Singh, S.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

Singha, S.

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520/1–10 (2008).
[Crossref]

Socol, G.

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

Sokolowski-Tinten, K.

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

Spera, D.

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Spyridaki, M.

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

Stelmaszczyk, K.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Stockhaus, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

Stoian, R.

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Teghil, R.

R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Tikhonchuk, V. T.

B. Chimier and V. T. Tikhonchuk, “Liquid-vapor phase transition and droplet formation by subpicosecond laser heating,” Phys. Rev. B 79, 184107/1–10 (2009).
[Crossref]

Tzanetakis, P.

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

Vadlab, C.

C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
[Crossref]

Varel, H.

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

Villani, P.

R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

Wang, X.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

X. Wang, S. Amoruso, and J. Xia, “Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation,” Appl. Surf. Sci. 255, 5211–5214 (2009).
[Crossref]

Winter, M.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

Wolf, J.-P.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Wollenhaupt, M.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

Wood, V.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

Wöste, L.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Xia, J.

X. Wang, S. Amoruso, and J. Xia, “Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation,” Appl. Surf. Sci. 255, 5211–5214 (2009).
[Crossref]

Xu, H. L.

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Yu, J.

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

Zhigilei, L. V.

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133/1–17 (2008).
[Crossref]

Anal. Bioanal. Chem. (1)

A. Giakoumaki, K. Melessanaki, and D. Anglos,“Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

F. Garrelie, N. Benchikh, C. Donnet, R. Y. Fillit, J. N. Rouzaud, J. Y. Laval, and V. Pailleret, “One-step deposition of diamond-like carbon films containing self-assembled metallic nanoparticles, by femtosecond pulsed laser ablation,” Appl. Phys. A: Mater. Sci. Process. 90, 211–217 (2008).

Appl. Phys. B: Las. Opt. (2)

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B: Las. Opt. 77, 391–397 (2003).
[Crossref]

H. L. Xu, G. Méjean, W. Liu, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J.-R. Simard, and S. L. Chin, “Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy,” Appl. Phys. B: Las. Opt. 87, 151–156 (2007).
[Crossref]

Appl. Phys. Lett. (4)

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, and J.-P. Wolf, “Femtosecond laser pulses distinguish bacteria from background urban aerosols,” Appl. Phys. Lett. 87, 063901/1–3 (2005).
[Crossref]

M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultrafast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474–1476 (2003).
[Crossref]

R. Stoian, A. Mermillod-Blondin, N. M. Bulgakova, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, and C. Fotakis, “Optimization of ultrafast laser generated low-energy ion beams from silicon targets,” Appl. Phys. Lett. 87, 124105/1–3 (2005).
[Crossref]

D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, and J. Etchepare, “Interaction of a laser-produced plume with a second time delayed femtosecond pulse,” Appl. Phys. Lett. 86, 071502/1–3 (2005).
[Crossref]

Appl. Spect. (1)

E. L. Gurevich and R. Hergenröder, “Femtosecond Laser-Induced Breakdown Spectroscopy: Physics, Applications, and Perspectives,” Appl. Spect. 61233A–242A (2007).
[Crossref]

Appl. Surf. Sci. (10)

R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, “Chromium carbide thin films deposited by ultra-short pulse laser deposition,” Appl. Surf. Sci. 255, 7729–7733 (2009).
[Crossref]

D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC,” Appl. Surf. Sci. 252, 4857–4862 (2006).
[Crossref]

A. Santagata, R. Teghil, G. Albano, D. Spera, P. Villani, A. De Bonis, G. P. Parisi, and A. Galasso, “Fs/ns dual-pulse LIBS analytic survey for copper-based alloys,” Appl. Surf. Sci. 254, 863–867 (2007).
[Crossref]

S. Noël, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255, 9738–9741 (2009).
[Crossref]

X. Wang, S. Amoruso, and J. Xia, “Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation,” Appl. Surf. Sci. 255, 5211–5214 (2009).
[Crossref]

J. P. Colombier, E. Audouard, P. Combis, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Controlling energy coupling and particle ejection from aluminum surfaces irradiated with ultrashort laser pulses,” Appl. Surf. Sci. 255, 9597–9600 (2009).
[Crossref]

M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.-S. Loir, and E. Audouard, “Adaptive control of femtosecond laser ablation plasma emission,” Appl. Surf. Sci. 255, 5163–5166 (2009).
[Crossref]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, and G. P. Parisi, “ns- and fs-LIBS of copper-based-alloys: A different approach,” Appl. Surf. Sci. 253, 7677–7681 (2007).
[Crossref]

R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, and E. E. B. Campbell, “Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3,” Appl. Surf. Sci. 165, 44–55 (2000).
[Crossref]

Chem. Phys. Lett. (1)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[Crossref]

J. Anal. At. Spectrom. (2)

Ph. Rohwetter, J. Yu, G. Méjean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and L. Wöste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437–444 (2004).
[Crossref]

C. C. Garcia, H. Lindner, A. von Bohlen, C. Vadlab, and K. Niemax, “Elemental fractionation and stoichiometric sampling in femtosecond laser ablation,” J. Anal. At. Spectrom. 23, 470–478 (2008).
[Crossref]

J. Appl. Phys. (3)

S. Singha, Z. Hu, and R. J. Gordon, “Ablation and plasma emission produced by dual femtosecond laser pulses,” J. Appl. Phys. 104, 113520/1–10 (2008).
[Crossref]

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304/1–5 (2009).
[Crossref]

J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Craciun, O. Albert, J. C. Loulergue, and J. Etchepare, “Comparison between ZnO films grown by femtosecond and nanosecond laser ablation,” J. Appl. Phys. 91, 690–696 (2002).
[Crossref]

Mass Spectrom. Rev. (1)

R. Hergenröder, O. Samek, and V. Hommes, “Femtosecond laser ablation elemental mass spectrometry,” Mass Spectrom. Rev. 25, 551–572 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (4)

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74, 224106/1–16 (2006).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108/1–22 (2006).
[Crossref]

Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B 77, 075133/1–17 (2008).
[Crossref]

B. Chimier and V. T. Tikhonchuk, “Liquid-vapor phase transition and droplet formation by subpicosecond laser heating,” Phys. Rev. B 79, 184107/1–10 (2009).
[Crossref]

Phys. Rev. E (1)

N. M. Bulgakova, I. M. Bourakov, and N. A. Bulgakova, “Rarefaction shock wave: Formation under short pulse laser ablation of solids,” Phys. Rev. E,  63, 046311/1–5 (2001).
[Crossref]

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Sov. Tech. Rev. B: Therm. Phys. Rev. (1)

A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of state for matter under conditions of high energy density,” Sov. Tech. Rev. B: Therm. Phys. Rev. 5, 1 (1993).

Spectrochim. Acta Part B (3)

V. Piñon, C. Fotakis, G. Nicolas, and D. Anglos, “Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses,” Spectrochim. Acta Part B 63, 1006–1010 (2008).
[Crossref]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
[Crossref]

O. V. Borisov, X. L. Mao, A. Fernandez, M. Caetano, and R. E. Russo, “Inductively coupled plasma mass spectrometric study of non-linear calibration behavior during laser ablation of binary Cu-Zn Alloys,” Spectrochim. Acta Part B 54, 1351–1365 (1999).
[Crossref]

Thin. Sol. Films (1)

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin. Sol. Films 453–454, 501–505 (2004).
[Crossref]

Other (1)

M. Guillermin, “Study of the femtosecond laser ablation plume, control and optimization of processes,” PhD Thesis, Université Jean Monnet, Saint Etienne (2009) (http://tel.archives-ouvertes.fr/tel-00395196/en/).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Experimental two-dimensional images of the plume. (b) Typical spectra of the brass plasma under ultrashort pulse laser irradiation. The acquired spectra correspond to the plasma core that propagates towards the right side. (c) Spectral assignment of the main Cu-I, Zn-I, Cu-II, Zn-II lines [28] based on Grotrian diagrams.

Fig. 2.
Fig. 2.

(a) Neutral and (b) ionic integrated spectral emission intensities in the spectral region 300–700 nm for various pulse shapes as a function of the incident laser fluence. SP, LP, DP sequences were used (see text for details). Different behavioral domains can be defined, corresponding to different average fluence regimes (LF-low fluence, MF-moderate fluence, HF-high fluence).

Fig. 3.
Fig. 3.

Spectral intensity enhancement (relative increase or magnification factor) for particular pulse shapes, LP (left column) and DP (right column) in various fluence regimes [low 1.3 J/cm2 (a,b), moderate 2.6 J/cm2 (c,d), and high 4.8 J/cm2 (e,f)]. The emission corresponds to characteristic narrow spectral ranges centered on the observed lines. Neutral Cu-I lines (solid squares) and Zn-I (solid circles) are used, normalized to the SP value. Relative ionic emission increase for a mixed signal comprising Cu-II and Zn-II (open circles and squares) with respect to the SP level are equally shown. Note that in (c,d), in the absence of a measurable ionic signal for SP, the yield was normalized to the detection limit and rescaled for visibility.

Fig. 4.
Fig. 4.

Neutral and ionic spectral intensity enhancement (left) for optimized pulse shapes (right) in different fluence regime: (a,b) low fluence 1.2 J/cm2, (c-f) high fluence 4.2 J/cm2. SP-solid lines, OP-dashed lines. The corresponding fitness values were based on absolute neutral yield (a,b), absolute ion yield (c,d) and relative ion yield (e,f) in the given spectral domains (in the 330 nm region for the neutrals, around 493 nm for the ions, and comparative to the 481.05 nm Zn-I line for the relative yield), respectively.

Fig. 5.
Fig. 5.

Thin CuZn films deposited on Si substrates by various pulse shapes: (a) SP, (b) OP1. The fluence was fixed in the low range (F = 1.2 J/cm2) and the exposure time was 52 min at 1 kHz. Note the change in films morphologies. At high fluences resembling particulate distributions are observed.

Fig. 6.
Fig. 6.

Time-of-flight ion mass spectrometry traces indicating ion enhancement from a Cu target under the action of optimal pulses at a fluence 2.8 times higher than the asymptotic multishot ion emission threshold level. The measured signal corresponds to ions with a velocity of 2.6×104 m/s, located in the front part of the plume. Irradiation conditions: F = 0.8 J/cm2, N = 10 pulses per site. Note the increased sensitivity to ions in mass spectrometry as compared to spectral detection, where ions were not easily detected at this fluence (Fig. 2). Inset: the optimal pulse form.

Fig. 7.
Fig. 7.

Ablation density and temperature spatio-temporal profiles above the initial surface in a zt diagram, serving as indication for the temperature and species correlations in the ablation plume. SP and OP conditions are used. The scales were chosen to allow comparison to the experimental detection conditions. Different regimes were tested, a low fluence regime at 6×Fth (a), moderate fluence values at 8×Fth (b), and a high fluence regime at 16×Fth (c). The calculated threshold fluence is 0.5 J/cm2. Smaller particulate content is seen in the lower energy domains for optimized pulses as compared to the observable ejection of nanolayers at liquid density for SP. Increasing the fluence, higher temperature profiles, particularly in the plasma front, are obtained for optimized sequences, suggesting a development of the excitation degree along the temperature gradients. These temperatures may become less sensitive to the pulse form at very high fluence levels, beyond typical ablation regimes. Note the different color scales. The right side depicts the temperature axial profiles at the moment of experiment acquisition (250 ns).

Metrics