Abstract

We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310nm and 1490nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chanclou, Z. Belfqih, B. Charbonnier, T. Duong, F. Frank, N. Genay, M. Huchard, P. Guignard, L. Guillo, B. Landousies, A. Pizzinat, and H. Ramanitra, “Optical access evolutions and their impact on the metropolitan and home networks,” in Proceedings of ECOC 2008, paper We.3.F.1.
  2. B. Zhu, and D. Nesset, “GPON reach extension to 60km with entirely passive fiber using Raman amplifiers,” in Proceedings of ECOC 2009, paper 8.5.5.
  3. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of ECOC 2009, paper 10.5.5.
  4. S. Inao, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.
  5. K. Imamura, K. Mukasa T. Yagiet, “Investigation on Multi-Core Fibers with Large Aeff and Low Micro Bending Loss,” in Proceedings of Optical Fiber Communications Conference 2010, paper OWK6.
  6. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber,” in Proceedings of Optical Fiber Communications Conference 2010, paper OWK7.
  7. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multicore fiber: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
    [CrossRef]
  8. G. A. Miller, C. G. Askins, and T. Taunay, “Wavelength-selective core-to-jacket coupling in optical fiber,” Opt. Lett. 32(7), 760–762 (2007).
    [CrossRef] [PubMed]
  9. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004).
    [CrossRef] [PubMed]
  10. J. M. Fini, T.F. Taunay, B. Zhu, and M. F. Yan, “Low cross-talk design of multicore fibers,” to be presented at CLEO 2010.
  11. D. J. DiGiovanni, and A. J. Stentz, “ Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” US Patent 5864644, June 26, 1999.
  12. C. Headley, “Cascaded Raman Resonators,” in Raman Amplification in Fiber Optical Communication Systems, C. Headley and G. P. Agrawal, eds. (Elsevier Academic Press, 2005), Chap. 7, pp. 303–312.
  13. B. Rosinski, J. W. D. Chi, P. Grosso, and J. L. Bihan, “Multichannel transmission of a multicore fiber coupled with VCSEL,” J. Lightwave Technol. 17, 807–810 (1999).
    [CrossRef]

2009

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multicore fiber: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

2007

2004

1999

Albin, S.

Askins, C. G.

Bihan, J. L.

Chi, J. W. D.

Grosso, P.

Guo, S.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multicore fiber: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Koshiba, M.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multicore fiber: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Miller, G. A.

Rogowski, R.

Rosinski, B.

Saitoh, K.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multicore fiber: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Tai, H.

Taunay, T.

Wu, F.

IEICE Electron. Express

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multicore fiber: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

J. M. Fini, T.F. Taunay, B. Zhu, and M. F. Yan, “Low cross-talk design of multicore fibers,” to be presented at CLEO 2010.

D. J. DiGiovanni, and A. J. Stentz, “ Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” US Patent 5864644, June 26, 1999.

C. Headley, “Cascaded Raman Resonators,” in Raman Amplification in Fiber Optical Communication Systems, C. Headley and G. P. Agrawal, eds. (Elsevier Academic Press, 2005), Chap. 7, pp. 303–312.

P. Chanclou, Z. Belfqih, B. Charbonnier, T. Duong, F. Frank, N. Genay, M. Huchard, P. Guignard, L. Guillo, B. Landousies, A. Pizzinat, and H. Ramanitra, “Optical access evolutions and their impact on the metropolitan and home networks,” in Proceedings of ECOC 2008, paper We.3.F.1.

B. Zhu, and D. Nesset, “GPON reach extension to 60km with entirely passive fiber using Raman amplifiers,” in Proceedings of ECOC 2009, paper 8.5.5.

H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of ECOC 2009, paper 10.5.5.

S. Inao, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

K. Imamura, K. Mukasa T. Yagiet, “Investigation on Multi-Core Fibers with Large Aeff and Low Micro Bending Loss,” in Proceedings of Optical Fiber Communications Conference 2010, paper OWK6.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of Crosstalk by Quasi-Homogeneous Solid Multi-Core Fiber,” in Proceedings of Optical Fiber Communications Conference 2010, paper OWK7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Measured attenuation spectra of 7-core MCF, (b) Calculated tunneling loss versus wavelength for clad diameter of 130μm and 140μm. This tunneling loss introduces an excess attenuation in the outer cores above that in the center core.

Fig. 2
Fig. 2

Examples of the relative power versus the radius for crosstalk measurements.

Fig. 3
Fig. 3

Schematic diagram of tapered multicore fiber connectors.

Fig. 4
Fig. 4

(a) experiment set-up for study the splicing property of MCF, (b) splice losses of each core of seven-core MCF using PM fusion splicer.

Fig. 5
Fig. 5

Schematic diagram of a PON system using a 7-core MCF and two TMCs, 1310nm and 1490 nm DFB diodes as transmitters, APD as receivers.

Fig. 6
Fig. 6

BER performance for 1310nm US (a) and 1490nm DS (b) for all 7-core parallel transmission with 1:64 splitter for three cases: back-to-back (B2B, black), one core transmits only (core#-only, red) and all cores operate through the MCF simultaneously (core#-all, blue).

Tables (3)

Tables Icon

Table 1 Crosstalk Characteristics

Tables Icon

Table 2 Insertion Loss and Crosstalk of TMCs

Tables Icon

Table 3 Total Link Losses

Metrics