Abstract

The design, experimental evaluation and performance of a Traveling-Wave Uni-Traveling Carrier photodiode for Terahertz generation are described and its advantages in terms of frequency response are demonstrated. The device delivered 148 μW at 457 GHz, 24 μW at 914 GHz when integrated with resonant antennas and 105 μW at 255 GHz, 30 μW at 408 GHz, 16 μW at 510 GHz and 10 μW at 612 GHz. Record levels of Terahertz figure of merit (PTHz/Popt 2 in W−1) were achieved ranging from 1 W−1 at 110 GHz to 0.0024 W−1 at 914 GHz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef]
  3. H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
    [CrossRef]
  4. H. Eisele, “Third-Harmonic Power Extraction from InP Gunn Devices up to 455 GHz,” IEEE Microw. Wirel. Compon. Lett. 19(6), 416–418 (2009).
    [CrossRef]
  5. H. Eisele, “355 GHz oscillator with GaAs TUNNETT diode,” Electron. Lett. 41(6), 329 (2005).
    [CrossRef]
  6. M. Ino, T. Ishibashi, and M. Ohmori, “CW oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands,” Electron. Lett. 12(6), 148–149 (1976).
    [CrossRef]
  7. G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
    [CrossRef]
  8. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995).
    [CrossRef]
  9. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
    [CrossRef]
  10. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
    [CrossRef]
  11. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-traveling carrier photodiode,” Proc. SPIE 6194, 61940C–61940C–8 (2006).
  12. K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
    [CrossRef]
  13. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
    [CrossRef]
  14. J. Campbell, S. Demiguel, and N. Li, “High-speed photodetectors,” 31st European Conference on Optical Communication (Glasgow, Scotland, 2005), pp. 493–496 vol.3.
  15. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
    [CrossRef]
  16. A. J. Seeds, F. Pozzi, C. C. Renaud, M. J. Fice, L. Ponnampalam, D. C. Rogers, I. F. Lealman, and R. Gwilliam, “Microwave Photonics: Opportunities for Photonic Integration”, 14th European Conference on Integrated Optics (Eindhoven, The Netherlands, 2008), Th1, pp. 123–132.
  17. C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High Output Power at 110 GHz with a Waveguide Uni-Travelling Carrier photodiode,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Lake Buena Vista, Florida, USA, 2007), pp. 782–783.
  18. E. A. Michael, “Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz,” Semicond. Sci. Technol. 20(7), S164–S177 (2005).
    [CrossRef]
  19. D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
    [CrossRef]

2009

H. Eisele, “Third-Harmonic Power Extraction from InP Gunn Devices up to 455 GHz,” IEEE Microw. Wirel. Compon. Lett. 19(6), 416–418 (2009).
[CrossRef]

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

2008

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

2005

H. Eisele, “355 GHz oscillator with GaAs TUNNETT diode,” Electron. Lett. 41(6), 329 (2005).
[CrossRef]

E. A. Michael, “Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz,” Semicond. Sci. Technol. 20(7), S164–S177 (2005).
[CrossRef]

2004

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

2002

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

2001

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

2000

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[CrossRef]

1997

K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

1995

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995).
[CrossRef]

1976

M. Ino, T. Ishibashi, and M. Ohmori, “CW oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands,” Electron. Lett. 12(6), 148–149 (1976).
[CrossRef]

Belkin, M. A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Belyanin, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Bowers, J. E.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995).
[CrossRef]

Capasso, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Chang, H. H.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Chattopadhyay, G.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

Chiu, Y. J.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Chu, S. W.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995).
[CrossRef]

Eisele, H.

H. Eisele, “Third-Harmonic Power Extraction from InP Gunn Devices up to 455 GHz,” IEEE Microw. Wirel. Compon. Lett. 19(6), 416–418 (2009).
[CrossRef]

H. Eisele, “355 GHz oscillator with GaAs TUNNETT diode,” Electron. Lett. 41(6), 329 (2005).
[CrossRef]

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[CrossRef]

Faist, J.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Fedorov, G.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Fischer, M.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Forrest, S. R.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

Gan, K. G.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Giboney, K. S.

K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

Gill, J.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

Gokhale, M. R.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

Haddad, G. I.

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[CrossRef]

Hu, Q.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Ino, M.

M. Ino, T. Ishibashi, and M. Ohmori, “CW oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands,” Electron. Lett. 12(6), 148–149 (1976).
[CrossRef]

Ishibashi, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

M. Ino, T. Ishibashi, and M. Ohmori, “CW oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands,” Electron. Lett. 12(6), 148–149 (1976).
[CrossRef]

Ito, H.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

Kumar, S.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Lasaosa, D.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Lin, W.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

Maestrini, A.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

Maiwald, F.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

Martin, S.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995).
[CrossRef]

Mehdi, I.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

Michael, E. A.

E. A. Michael, “Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz,” Semicond. Sci. Technol. 20(7), S164–S177 (2005).
[CrossRef]

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995).
[CrossRef]

Ohmori, M.

M. Ino, T. Ishibashi, and M. Ohmori, “CW oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands,” Electron. Lett. 12(6), 148–149 (1976).
[CrossRef]

Pasquariello, D.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Pukala, D.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

Reno, J. L.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Rodwell, J. W.

K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

Rydberg, A.

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[CrossRef]

Schlecht, E.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

Shi, J. W.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Siegel, P. H.

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Smirnov, D.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Studenkov, P. V.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

Sun, C. K.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Thomson, J. K.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

Tien, M. C.

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

Wade, A.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Wei, J.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

Williams, B. S.

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Wittmann, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Xia, F.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

Xie, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Appl. Phys. Lett.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285 (1995).
[CrossRef]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101–201103 (2008).
[CrossRef]

Electron. Lett.

H. Eisele, “355 GHz oscillator with GaAs TUNNETT diode,” Electron. Lett. 41(6), 329 (2005).
[CrossRef]

M. Ino, T. Ishibashi, and M. Ohmori, “CW oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands,” Electron. Lett. 12(6), 148–149 (1976).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[CrossRef]

D. Lasaosa, J. W. Shi, D. Pasquariello, K. G. Gan, M. C. Tien, H. H. Chang, S. W. Chu, C. K. Sun, Y. J. Chiu, and J. E. Bowers, “Traveling-Wave Photodetectors with High Power-Bandwidth and Gain-Bandwidth Product Performance,” IEEE J. Sel. Top. Quantum Electron. 10(4), 728–741 (2004).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

G. Chattopadhyay, E. Schlecht, J. Gill, S. Martin, A. Maestrini, D. Pukala, F. Maiwald, and I. Mehdi, “A Broadband 800 GHz Schottky Balanced Doubler,” IEEE Microw. Wirel. Compon. Lett. 12(4), 117–118 (2002).
[CrossRef]

H. Eisele, “Third-Harmonic Power Extraction from InP Gunn Devices up to 455 GHz,” IEEE Microw. Wirel. Compon. Lett. 19(6), 416–418 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett. 13(8), 845–847 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,” IEEE Trans. Microw. Theory Tech. 48(4), 626–631 (2000).
[CrossRef]

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Nat. Mater.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Nat. Photonics

A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009).
[CrossRef]

Semicond. Sci. Technol.

E. A. Michael, “Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz,” Semicond. Sci. Technol. 20(7), S164–S177 (2005).
[CrossRef]

Other

A. J. Seeds, F. Pozzi, C. C. Renaud, M. J. Fice, L. Ponnampalam, D. C. Rogers, I. F. Lealman, and R. Gwilliam, “Microwave Photonics: Opportunities for Photonic Integration”, 14th European Conference on Integrated Optics (Eindhoven, The Netherlands, 2008), Th1, pp. 123–132.

C. C. Renaud, D. Moodie, M. Robertson, and A. J. Seeds, “High Output Power at 110 GHz with a Waveguide Uni-Travelling Carrier photodiode,” The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Lake Buena Vista, Florida, USA, 2007), pp. 782–783.

J. Campbell, S. Demiguel, and N. Li, “High-speed photodetectors,” 31st European Conference on Optical Communication (Glasgow, Scotland, 2005), pp. 493–496 vol.3.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-traveling carrier photodiode,” Proc. SPIE 6194, 61940C–61940C–8 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the taper waveguide integrated device. Type 1 devices (120 nm absorber) were integrated with a passive waveguide. Type 2 devices (70 nm absorber) were integrated with an InP/InGaAsP diluted taper waveguide.

Fig. 2
Fig. 2

Modelled frequency response up to 2 THz with 50 Ω load for a type 1, 4x15 μm2 TW-UTC-PD (black) compared with a 4x15 μm2 p-i-n TW-PD (red) and a 60 μm2 area lumped UTC-PD (blue).

Fig. 3
Fig. 3

SEM pictures of the different TW-UTC devices fabricated with: a) coplanar probe contacts (type 1 & 2), b) Bow-Tie antennas (type 2), c) Log-Periodic antennas (type 2), d) resonant antennas (type 1).

Fig. 4
Fig. 4

Experimental arrangement for RF and THz measurements.

Fig. 5
Fig. 5

(a) bias dependence up to 40 GHz (4x15 μm2), (b) frequency response up to 110 GHz (4x15 μm2).

Fig. 6
Fig. 6

Emitted THz power as a function of frequency. (a) Narrowband emission from type1, 4x15 μm2 devices integrated with resonant antennas, (b) Broadband emission up to 612 GHz from type 2 devices (device dimensions in μm2, antenna type and photocurrent levels given in the inset)

Metrics