Abstract

We realize the flattening and extending of a CW-pumped supercontinuum with a high spectral intensity peak at the pump region. It is achieved by cascading a long zero-dispersion wavelength high-nonlinearity fiber with the output photonic crystal fiber, in order to improve the conversion efficiency of residual pump energy to long-wavelength continuum based on the effect of cascaded stimulated Raman scattering. Compared with the non-flattened continuum of 10.3 W with 3 dB bandwidth of 62 nm and 10 dB bandwidth of 360 nm, a flat continuum of 8 W with 3 dB spectral range of 340 nm and 10 dB spectral range of 420 nm is obtained. The spectral peak at the pump region decreases more than 5 dB, below the level of long-wavelength spectral intensity. Also, the long-wavelength edge has been extended by 60 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  2. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Toward visible cw-pumped supercontinua,” Opt. Lett. 33(18), 2122–2124 (2008).
    [CrossRef] [PubMed]
  3. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33(20), 2407–2409 (2008).
    [CrossRef] [PubMed]
  4. A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45(1), 29–30 (2009).
    [CrossRef]
  5. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-Engineered Photonic Crystal Fibers for CW-Pumped Supercontinuum Sources,” J. Lightwave Technol. 27(11), 1556–1564 (2009).
    [CrossRef]
  6. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16(8), 5954–5962 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5954 .
    [CrossRef] [PubMed]
  7. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO(2)-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
    [CrossRef] [PubMed]
  8. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14435 .
    [CrossRef] [PubMed]
  9. A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92(14), 141103 (2008).
    [CrossRef]
  10. S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, “Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths,” Opt. Express 16(9), 6745–6755 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6745 .
    [CrossRef] [PubMed]
  11. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28(15), 1353–1355 (2003).
    [CrossRef] [PubMed]
  12. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15(18), 11553–11563 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11553 .
    [CrossRef] [PubMed]
  13. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, “Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management,” Opt. Lett. 31(13), 2036–2038 (2006).
    [CrossRef] [PubMed]
  14. A. Gouveia-Neto, A. Gomes, and J. Taylor, “Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1.32 μm,” J. Mod. Opt. 35(1), 7–10 (1988).
    [CrossRef]
  15. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6912 .
    [CrossRef] [PubMed]
  16. J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17(3), 1502–1507 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1502 .
    [CrossRef] [PubMed]
  17. A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30(1), 61–63 (2005).
    [CrossRef] [PubMed]
  18. G. Agrawal, Nonlinear fiber optics (Springer, 1995).

2009 (4)

2008 (6)

2007 (1)

2006 (1)

2005 (2)

2003 (2)

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28(15), 1353–1355 (2003).
[CrossRef] [PubMed]

1988 (1)

A. Gouveia-Neto, A. Gomes, and J. Taylor, “Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1.32 μm,” J. Mod. Opt. 35(1), 7–10 (1988).
[CrossRef]

Abeeluck, A. K.

Abrardi, L.

Avdokhin, A. V.

Beaugeois, M.

Bigot, L.

Bouazaoui, M.

Bouwmans, G.

Coen, S.

Corredera, P.

Cumberland, B. A.

Douay, M.

Drexler, W.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Fercher, A.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Gomes, A.

A. Gouveia-Neto, A. Gomes, and J. Taylor, “Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1.32 μm,” J. Mod. Opt. 35(1), 7–10 (1988).
[CrossRef]

Gonzalez-Herraez, M.

Gouveia-Neto, A.

A. Gouveia-Neto, A. Gomes, and J. Taylor, “Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1.32 μm,” J. Mod. Opt. 35(1), 7–10 (1988).
[CrossRef]

Headley, C.

Hitzenberger, C.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Kobtsev, S. M.

Kudlinski, A.

Lasser, T.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Le Rouge, A.

Maillotte, H.

Martin-Lopez, S.

Mélin, G.

Mussot, A.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO(2)-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
[CrossRef] [PubMed]

A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-Engineered Photonic Crystal Fibers for CW-Pumped Supercontinuum Sources,” J. Lightwave Technol. 27(11), 1556–1564 (2009).
[CrossRef]

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45(1), 29–30 (2009).
[CrossRef]

S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, “Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths,” Opt. Express 16(9), 6745–6755 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6745 .
[CrossRef] [PubMed]

A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33(20), 2407–2409 (2008).
[CrossRef] [PubMed]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92(14), 141103 (2008).
[CrossRef]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15(18), 11553–11563 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11553 .
[CrossRef] [PubMed]

Popov, S. V.

Quiquempois, Y.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO(2)-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
[CrossRef] [PubMed]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92(14), 141103 (2008).
[CrossRef]

Rulkov, A. B.

Smirnov, S. V.

Sylvestre, T.

Taki, M.

Taylor, J.

A. Gouveia-Neto, A. Gomes, and J. Taylor, “Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1.32 μm,” J. Mod. Opt. 35(1), 7–10 (1988).
[CrossRef]

Taylor, J. R.

Travers, J. C.

Vanholsbeeck, F.

Vanvincq, O.

Vedadi, A.

Appl. Phys. Lett. (1)

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92(14), 141103 (2008).
[CrossRef]

Electron. Lett. (1)

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45(1), 29–30 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

A. Gouveia-Neto, A. Gomes, and J. Taylor, “Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1.32 μm,” J. Mod. Opt. 35(1), 7–10 (1988).
[CrossRef]

Opt. Express (6)

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6912 .
[CrossRef] [PubMed]

J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17(3), 1502–1507 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1502 .
[CrossRef] [PubMed]

S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, “Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths,” Opt. Express 16(9), 6745–6755 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6745 .
[CrossRef] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15(18), 11553–11563 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11553 .
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16(8), 5954–5962 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5954 .
[CrossRef] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14435 .
[CrossRef] [PubMed]

Opt. Lett. (6)

Rep. Prog. Phys. (1)

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Other (1)

G. Agrawal, Nonlinear fiber optics (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated dispersion curve, nonlinearity curve and experimental measurements of the dispersion. The inset shows the SEM picture of the PCF.

Fig. 2
Fig. 2

Evolution of the non-flattened supercontinua with increasing pump power. Powers marked represent the power launched into the PCF. For 17.6 W the non-flattened output power was 10.3 W.

Fig. 3
Fig. 3

The longest wavelength from the SC spectrum with increasing pump power.

Fig. 4
Fig. 4

Evolution of the flattened supercontinuum with pump power. Powers marked represent the power launched into the PCF. For 17.6 W the flattened continuum output powers was 8 W.

Fig. 5
Fig. 5

(a) Dispersed output spectra of the supercontinua (left is short and right is long wavelengths) (b) Far-field profiles at the pump wavelength with the non-flattened case at the top and the flattened case at the bottom.

Metrics